Различные теории, объясняющие эту тенденцию, особое внимание обращают на роль процессов диффузии; действительно у крупных организмов площадь поверхности, через которую может идти диффузия, на грамм массы меньше, чем у мелких. Однако общепринятого объяснения связи между размером и метаболизмом пока нет.
Следует помнить, что с увеличением размеров снижается не общий метаболизм особи, а удельный. Взрослому человеку требуется пищи больше, чем маленькому ребенку, но на 1 кг массы взрослый потребляет меньше пищи.
Трофическая структура и экологические пирамиды.
В результате взаимодействия энергетических явлений в пищевых цепях (потерь энергии при каждом переносе) и такого фактора, как зависимость метаболизма от размеров особи, каждое сообщество приобретает определенную трофическую структуру, которая часто служит характеристикой экосистемы (озера, леса, пастбища и т.д.). Трофическую структуру можно измерить и выразить либо урожаем на корню на единицу площади, либо количеством энергии, фиксируемой на единицу площади за единицу времени на последовательных трофических уровнях. Трофическую структуру и трофическую функцию можно изобразить графически в виде экологических пирамид. Основанием этих пирамид служит первый трофический уровень - уровень продуцентов, а последующие уровни образуют этажи и вершину пирамиды. Экологические пирамиды можно отнести к трем основным типам:
1) пирамида численностей, отражающая численность отдельных организмов;
2) пирамида биомассы, характеризующая общую сухую массу, калорийность или другую меру общего количества живого вещества ;
3) пирамида энергии, показывающая величину потока энергии и (или) "продуктивность" на последовательных трофических уровнях.
Пирамиды численности и массы могут быть обращенными, или частично обращенными, т.е. основание может быть меньше, чем один или несколько верхних этажей. Так бывает, когда средние размеры продуцентов меньше размеров консументов. Можно сформулировать некое "экологическое правило": данные по численности приводят к переоценке значения мелких организмов, а данные по биомассе - к переоценке роли крупных организмов. Следовательно, эти критерии непригодны для сравнения функциональной роли популяций, сильно различающихся по отношению интенсивности метаболизма к размеру особей, хотя, как правило, биомасса все же более надежный критерий, нежели численность.
Из трех типов экологических пирамид пирамида энергии дает наиболее полное представление о функциональной организации сообществ. Число и масса организмов, которых может поддерживать какой-либо уровень в тех или иных условиях, зависит не от количества фиксированной энергии, имеющейся в данное время на предыдущем уровне, а от скорости продуцирования пищи. В противоположность пирамидам численностей и биомассы, отражающим статику системы (т.е. характеризующим количество организмов в данный момент), пирамида энергии отражает картину скоростей прохождения массы пищи через пищевую цепь. На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь "правильную форму", как это диктуется вторым законом термодинамики. Концепция потока энергии не только позволяет сравнивать экосистемы между собой, но и дает средство для оценки относительной роли популяций в их биотических сообществах.
Многие исследователи считают, что трофическая структура - фундаментальное свойство каждого сообщества, ибо после острого нарушения его трофическая структура возвращается к равновесию независимо от видового состава и быстрее его, т.е. трофическая структура обладает способностью восстанавливаться. И только если экосистема постоянно находится под стрессовым воздействием, трофическая структура может измениться по мере приспособления биотических компонентов экосистемы к хроническим нарушениям.
Концентрация токсичных соединений при прохождении по пищевым цепям
Распределение энергии не единственный количественный параметр, на который влияют события, происходящие в пищевых цепях. Некоторые вещества по мере продвижения по цепи не рассеиваются, а наоборот, накапливаются. Это , так называемое, концентрирование в пищевой цепи, нагляднее всего демонстрируют некоторые устойчивые радионуклиды и пестициды. Так было обнаружено, что коэффициент накопления (соотношение количества вещества в тканях и в окружающей среде) радиоактивного фосфора равен 2 миллионам. Таким образом "безопасные выбросы" в окружающую среду могут стать крайне опасными для высших звеньев пищевой цепи, к которым относится и человек.
Подобный пример демонстрирует и ДДТ. Чтобы сократить численность комаров на Лонг-Айленде, болота много лет опыляли ДДТ. Специалисты по борьбе с насекомыми благоразумно не применяли таких концентраций, которые были бы непосредственно летальны для рыбы и других животных, но они не учли экологических процессов и длительного сохранения токсичных остатков ДДТ. Ядовитые остатки, адсорбированные на детрите, концентрировались в тканях детритофагов и мелких рыб и далее - в хищниках высшего порядка - таких, как рыбоядные птицы. Коэффициент концентрации для рыбоядных птиц составляет около 500 000.
Принцип биологического накопления надо учитывать при любых решениях, связанных с поступлением загрязнений в среду. Многие небиологические факторы, однако, могут уменьшать или увеличивать коэффициент концентрации. Так человек получает меньше ДДТ, чем рыбоядные птицы и частично это объясняется тем, что при обработке и варке пищи часть этого вещества удаляется. Хищная рыба же находится в особенно опасном положении, потому, что может получать ДДТ не только через пищу, но и прямо из воды через жабры.
Лекция 7.
Биосфера как глобальная экосистема.
1. Понятие о биосфере.
2. Живое вещество биосферы.
3. Геохимическая работа живого вещества.
Понятие о биосфере .
Представление о биосфере как общепланетарной оболочке, охватывающей толщу тропосферы, гидросферы, осадочных (и возможно гранитных) пород литосферы, в ходе всей геологической истории Земли; как глобальной единой системе Земли, где весь основной ход геохимических и энергетических превращений определяется жизнью, было разработано в трудах В.И. Вернадского. Вернадский впервые указал на активную преобразующую деятельность древних и современных организмов в изменении облика нашей планеты. Грандиозные масштабы этого процесса позволили ему развить учение о космической роли жизни в геологической истории Земли, что несомненно дает право считать его основателем учения о биосфере.
Биосферой Вернадский назвал ту область нашей планеты, в которой существует или когда-либо существовала жизнь и которая постоянно подвергается или подвергалась воздействию живых организмов.
Участие каждого отдельного организма в геологической истории Земли ничтожно мало. Однако живых существ на Земле бесконечно много, они обладают высоким потенциалом размножения, активно взаимодействуют со средой обитания и в конечном счете представляют в своей совокупности особый, глобальных масштабов фактор, преобразующий верхние оболочки Земли.
Значение организмов обусловлено их большим разнообразием, повсеместным распространением, длительностью существования в истории Земли, избирательным характером биохимической деятельности и исключительно высокой химической активностью по сравнению с другими компонентами природы.
Биосфера, таким образом, это та область Земли, которая охвачена влиянием живого вещества. С современных позиций биосферу рассматривают как наиболее крупную экосистему планеты, поддерживающую глобальный круговорот веществ.
Современная жизнь распространена в верхней части земной коры (литосфере), в нижних слоях воздушной оболочки Земли (атмосфере) и в водной оболочке Земли (гидросфере). Для обозначения совокупности всего живого на Земле вместе с его непосредственным окружением и ресурсами введем термин "современная биосфера" или "экосфера".
Экосфера непрерывной оболочкой одевает земной шар, а ее протяженность по вертикали меняется от долей метра - в областях чрезвычайно скудной жизни (арктические и антарктические пустыни) - до тысяч метров. Нижняя граница экосферы ограничена прежде всего температурой горных пород и подземных вод, которая постепенно возрастает с глубиной и на уровне 1,5 - 15 км уже превышает 100°С. Поэтому вглубь Земли живые организмы проникают на небольшое расстояние. Самая большая глубина, на которой в породах земной коры были обнаружены бактерии, составляет 4 км. В нефтяных месторождениях на глубине 2 - 2,5 км бактерии регистрируются в значительном количестве. В океане жизнь распространена до более значительных глубин и встречается даже на дне океанических впадин в 10 - 11 км от поверхности, так как температура там около 0°С. Однако по Вернадскому нижнюю границу биосферы следует проводить еще глубже. Постепенно накапливающиеся в океане гигантские толщи осадочных пород, происхождение которых связано с деятельностью живых существ - это тоже часть биосферы. В соответствии с динамическими процессами в земной коре осадочные породы постепенно вовлекаются в глубь ее, метаморфизируясь под действием высоких температуры и давления. Метаморфические породы земной коры, происходящие из осадочных, в конечном итоге также производные жизни.
Верхняя граница жизни в атмосфере определяется нарастанием с высотой ультрафиолетовой радиации. На высоте 25 - 27 км большую часть ультрафиолетового излучения Солнца поглощает находящийся здесь тонкий слой озона - озоновый экран. Все живое, поднимающееся выше защитного слоя озона, погибает. Атмосфера же над поверхностью Земли насыщена многообразными живыми организмами. Споры бактерий и грибов обнаруживают до высоты 20 - 22 км, но основная часть аэропланктона сосредоточена в слое до 1-1,5 км.