радионукли (цезий-137, стронций-90 и др.) этот выброс соответствует
500—600 Хиросимам.
Из-за того, что выброс радионуклидов происходил более 10 суток при меняющихся
метеоусловиях, зона основного за имеет веерный, пятнистый характер
(рис. 1.2). Кроме 30-километровой зоны, на которую пришлась большая часть
выброса, в разных местах в радиусе до 250 км были вы участки, где загрязнение достигло 200 Ки/км2. Общая площадь «пятен» с активностью более 40 Ки/км2 составила около 3,5 тыс. км2, где в момент аварии проживало 190 тыс. человек. Всего радиоактивным выбросом ЧАЭС в разной сте было загрязнено 80% территории Белоруссии, вся север часть Правобережной Украины и 19 областей России. В целом по РФ загрязнение, обусловленное аварией на ЧАЭС, с плотностью 1 Ки/км2 и выше охватывает более 57 тыс. км2, что составляет 1,6% площади ЕТР (табл.1.1). Уточненные в 1994 г. границы площадей, загрязненных цезием-137, по срав с 1993 г. почти не изменились. Следы Чернобыля обнаружены в большинстве стран Европы (табл. 1.2), а также в Японии, на Филиппинах, в
Канаде. Катастрофа приобрела глобальный характер.
.Рис. 1.2. Карта-схема территорий с наиболее интенсивным загрязнением
радионуклидами выброса Чернобыльской аварии:
— зона активности 15 Ки/км2; — зоны с активностью более 40 Ки/км
2; — граница 30-километровой зоны; ----- — Государственная граница
И сегодня спустя полтора десятилетия после чернобыль трагедии существуют
противоречивые оценки ее пора действия и причиненного экономического
ущерба. Согласно опубликованным в 2000 г. данным из 860 тыс. чело,
участвовавших в ликвидации последствий аварии, более 55 тыс. ликвидаторов
умерли, десятки тысяч стали инвалида. Полмиллиона человек до сих пор
проживает на загряз территориях.
Таблица 1.1. Площади областей и республик России, загрязненных цезием-137 (по
состоянию на январь 1995 г.)
Области, Общая площадь Площадь загрязнений
Республики. цезием-137, км2. области, республики,
тыс. км2 Ки/км2
1-5 5-15 15-40 >40
1. Белгородская 27,1 1 620
2. Брянская 34,9 6 750 2628 2 130 310
3. Воронежская 52,4 1 320
4. Калужская 29,9 3 500 1 419
5. Курская 29,8 1 220
6. Липецкая 24,1 1 619
7. Ленинградская 85,9 850
8. Нижегородская 74,8 250
9. Орловская 24,7 8840 132
10. Пензенская 43,2 4 130
11. Рязанская 39,6 5 320
12. Саратовская 100,2 150
13. Смоленская 49,8 100
14. Тамбовская 34,3 510
15. Тульская 25,7 1 320 1 271
16. Ульяновская 37,3 1 100
17. Мордовия 26,2 1 900
18. Татарстан , 68,0 110
19. Чувашия 18,0 80
Итого 49 760 5450 2 130 310
Точных данных о количестве облученных и полученных до нет. Нет и
однозначных прогнозов о возможных генетиче последствиях. Подтверждается
тезис об опасности дли воздействия на организм малых доз радиации. В
рай, подвергшихся радиоактивному заражению, неуклонно рас число
онкологических заболеваний, особенно выражен рост заболеваемости раком
щитовидной железы детей.
Таблица 1.2. Средние эффективные эквивалентные дозы радиации для ряда стран
Европы в течение первого года после Чернобыльской аварии, мкЗв
Страна | Эффективная эквивалентная доза за первый год | Ожидаемая эффективная эквивалентная доза |
АвстрияФинляндия БолгарияРумыния Югославия Греция ЧехияиСловакия ИталияНорвегияПольшаВенгрияСНГ (СССР) | 670360940570380590390300230240250260 | 3200 20001800170017001200890810790740400820 |
2 Распространение радиационного загрязнения.
2.1 Радиоактивное загрязнение воздушной среды.
Радиоактивные вещества, попадающие в атмосферу при их добыче, и эксплуатации
атомных установок и двигателей, могут представлять опасность. Однако при
современном уровне защитной техники этот Источник радиоактивности
незначи.
Наибольшее загрязнение атмосферы радиоактивными вещест происходит в
результате взрывов атомных и водородных бомб. Каждый такой взрыв
сопровождается образованием гран облака радиоактивной пыли. Взрывная
волна огромной силы распространяет ее частицы во всех направлениях, поднима
их более чем на 30 км. В первые часы после взрыва осажда наиболее
крупные частицы, несколько меньшего размера — влечение 5 суток, а
мелкодисперсная пыль потоками воздуха пере на тысячи километров и
оседает на поверхности земного шара в течение многих лет.
2.2 Радиоактивное загрязнение водной среды.
Основными источниками радиоактивного загряз Мирового океана являются:
- загрязнения от испытаний ядерного оружия (в атмосфере до 1963 г.);
- загрязнения радиоактивными отходами, ко непосредственно
сбрасываются в море;
- крупно аварии (ЧАОС, аварии судов с атомными реакторами);
- захоронение радиоактивных отходов на дне и др. (Израиль и др., 1994).
Во время испытания ядерного оружия, особенно до 1963 г., когда проводилис
массовые ядерные взрывы, в атмосферу было вы огромное количество
радионуклидов. Так, только на арктическом архипелаге Новая Земля было
проведено более 130 ядерных взрывов (только в 1958 г. -46 взрывов), из них
87- в атмосфере.
Отходы от английских и французских атомных заводов загрязнили радиоактивными
элементами практически всю Северную Атлантику, особенно Северное, Норвежское,
Гренландское, Баренцево и Белое моря. В загрязнение радионуклидами акватории
Северного Ледовитого океана некоторый вклад сделан и нашей страной. Работа
трех подземных атомных реакторов и радиохимического завода (производство
плутония), а также остальных производств в Красноярске-26 привела к
загрязнению одной из самых крупных рек мира - Енисея (на .протяжении 1 500
км). Очевидно, что эти, радиоактивные продукты уже попали в Северный
Ледовитый океан.
Воды Мирового океана загрязнены наиболее опасными радионуклидами цезия-137,
стронция-90, церия-144, иттрия-91, ниобия-95, которые, обладая высокой
биоаккумулирующей способностью переходят по пищевым цепям, и концентрируются
в морских организмах высших трофических уров, создавая опасность, как для
гидробионтов, так и для человека. Различными источниками поступления
радионуклидов загрязнены акватории арк морей, так в 1982 г.
максимальные загрязнения цезием-137 фиксировались в западной части Баренцева
моря, которые в 6 раз превышали глобальное загрязнение вод Северной
Атлантики. За 29-летний период наблюдений (1963-1992 гг.) концентрация
стронция-90 в Белом и Баренцевом морях уменьшилась лишь в 3-5 раз.
Значитель опасность вызывают затопленные в Карском море (около
архипелага Новая Земля) 11 тыс. контейнеров с радиоактивными отходами, а
также 15 аварийных реакторов с атомных подводных лодок. Работами 3-й
советско-американской экспеди 1988 г. установлено, что в водах Берингова
и Чукотского моря, концентрация цезия-137 близка к фоновой для районов океана
и обусловлена гло поступлением данного радионуклида из атмосферы за
длительный промежуток времени. Однако эти концентрации (0,1,Ки/л) были в 10-
50 раз ниже, чем в Черном, Баренцевом, Балтийским и Гренландском, морях,
подверженных воздействию локальных источников радиоактивного загрязнени
Все вышеперечисленное показывает, что чело, вероятно, забыл: океан - это
мощная кладо минеральных и биологических ресурсов; в частности, он даёт 90%
нефти и газа, 90% миро добычи брома, 60% магния и огромное коли,
морепродуктов, что важно при увеличивающемся населении нашей планеты. По этому
поводу знаменитый исследователь Жак-Ив Кусто напоминает: «.Море -
продолжение нашего мира, часть нашей Вселенной, владения, которые мы обязаны,
охранять, если хотим выжить».
2.3 Радиоактивное загрязнение почвы.
В связи с широким использованием в народном хозяйстве радиоактивных веществ
появилась опасность загрязнения почв радионуклидами. Источники радиации —
ядерные установки, ис ядерного оружия, отходы урановых шахт.
Потенциаль источниками, радиоактивного загрязнения могут стать авари
на ядерных установках, АЭС (как в Чернобыле, Екатерин, а также в США,
Англии).
В верхнем слое почвы концентрируются радиоактивные стронций и цезий, откуда
они попадают в организм животных и человека. Лишайники северных зон обладают
повышенной спо к аккумуляции радиоактивного цезия. Олени,
питающиеся ими, накапливают изотопы, а у населения, использующе в пищу
оленину, в организме в 10 раз больше цезия, чем у , других северных народов.
2.4 Радиоактивное загрязнение растительного и животного мира.
Биологическое накопление свойственно и зеле растениям, которые,
аккумулируя опреде химические элементы, изменяют окраску хвои,
листьев, цветков и плодов. Это иногда служит, индикаторным, признаком, при
поисках полезных ископаемых. Например, береза и осина в Восточной Сибири
накапливает в своей древесине значительные, содержания стронция-90, что
приводит к появлению необычной окраски - неестественно зелёного цвета. Сон-
трава на южном Урале аккумулирует никель поэтому ее около-цветник вместо
фиолетового цвета становится белым, что указывает на высокие концентрации
ни в почве. В ареале рассеяния урановых месторождений лепестки иван-чая
вместо розовых ста белыми и ярко-пурпуровыми, у голубики плоды вместо
темно-синих становятся белыми и т,д. (Артамонов, 1989).
Радионуклиды, попадая ,в окружающую среду, часто рассеиваются и разбавляются
в водах, но они могут различными способами накапливаться в живых организмах
при движении по пищевым цепям ("биологическое накопление. На рис. 2.1 показан
процесс накопления стронция-90 по пищевым цепям в небольшом канадском озере
Перч-Лейк, принимающим низкоактивные отходы