При добавлении в воду поверхностно-активного вещества (ОП-10) значения D увеличиваются более существенно для флокулянта К, чем для флокулянта А. Очевидно, молекулы ОП-10, адсорбируясь на дисперсных частицах, способствуют локальной адсорбции макромолекул флокулянта К. Для флокулянта А отмечено уменьшение (в присутствии ОП-10) среднеквадратичных размеров макромолекулярных клубков в растворе (r2)1/2, которое уменьшало величину D.
На водоочистной станции г. Кемерово [36] проанализированы причины повышения содержания остаточного алюминия в питьевой воде, и для снижения этого показателя предложена замена реагентов – СА на гидроксосульфат алюминия (ГСА) и аммиачного ПАА на низкомолекулярный катионный флокулянт ВПК-402 (полидиметилдиаллиламмонийхлорид), выпускаемый ПО «Каустик» г. Стерлитамак. Опыты проводили на пилотной установке фирмы Preussag Noell при температуре воды 200 С. Были проанализированы два фильтроцикла при тех же дозах реагентов, что и на очистных сооружениях. На рис. 1.2 приведена зависимость мутности воды и концентрации остаточного алюминия в фильтрованной воде от времени для фильтроциклов по очистке р. Томи при использовании ГСА (2 мг·л–1 Al2O3) с ВПК-402 (0,2 мг·л–1), а также СА с ПАА в тех же дозах.
Рис. 1.2 - Зависимость мутности воды N (мг·л–1) (1-3) и концентрация остаточного алюминия в фильтрованной воде с Al (мг·л–1) (4) от времени t (ч) для фильтроциклов по очистке р. Томи на пилотной установке фирмы Preussag Noell, а - для гидроксосульфата алюминия (2 мг·л–1 Al2O3) и ВПК-402 (0.2 мг·л–1); б - для сульфата алюминия (2 мг·л-1 Al2O3) и ПАА (0,2 мг·л–1). Вода: 1 - исходная, 2 – осветлённая, 3 – фильтрованная
Фильтроцикл на пилотной установке с применением СА и ПАА хорошо моделировал работу очистных сооружений. Мутность воды после отстойника не отличалась от исходной, а после фильтров – сохранялась на уровне 2 мг·л–1, что свидетельствует о неэффективной работе установки. При применении ГСА и ВПК-402 обеспечивалась лучшая работа отстойника и качество фильтрованной воды соответствовало требованиям нормативов по мутности. Содержание остаточного алюминия не превышало 0,1 мг·л–1, тогда как при использовании СА с аммиачным ПАА его величина равнялась 0,2 мг·л–1.
В работе [37] приведены результаты очистки воды р. Дон на водопроводной станции г. Ростова-на-Дону с использованием катионного флокулянта ВПК-402, который применяли как единственный реагент с марта 1994 г. При введении флокулянта в камеры хлопьеобразования осветление воды в отстойниках было слабым, а мутность очищенной воды намного превышала нормы качества питьевой воды. Поэтому флокулянт стали вводить во всасывающие линии насосов на промежуточной насосной станции подкачки, расположенной в 3 км от очистных сооружений. При этом взаимодействие флокулянта с коллоидными загрязнениями в воде проходило уже в трубах и повышало мутность очищаемой воды по сравнению с речной водой, что способствовало последующему эффективному осветлению воды в отстойниках. В табл. 1.6 приведены результаты осветления воды коагулянтом (1993 г) и флокулянтом (1995 г), а в табл. 1.7 сведены показатели качества водоочистки.
Согласно данным табл. 1.6 и 1.7, флокулянт ВПК-402 по сравнению с коагулянтом СА обеспечивал более глубокий и устойчивый в течение всего года эффект осветления воды в отстойниках и фильтрах. Дозирование флокулянта ВПК-402 в воду без разбавления позволило упростить и удешевить конструкцию реагентного хозяйства и его эксплуатацию.
Таблица 1.6 - Влияние флокулянта ВПК-402 и сульфата алюминия на качество очистки воды на водопроводной станции г. Ростова-на-Дону
В среднем за год | Доза реагентов, мг·л–1 | Мутность воды, мг·л–1 | ||||
ВПК-402 | сульфат алюминия | исходной | в смесителе | после отстойника | очищенной | |
1993 | - | 19,9 | 12,5 | 12,2 | 5,3 | 1,1 |
1995 | 0,23 | - | 13,3 | 7,7 | 3,7 | 0,96 |
По данным табл. 1.7 замена коагулянта СА на флокулянт ВПК-402 снизила содержание в очищенной воде остаточного алюминия, а остальные показатели очищенной воды изменялись одинаково. По сравнению с СА при использовании флокулянта ВПК-402 требуемый эффект очистки воды обеспечивался меньшими на порядок дозами.
Испытания катионного флокулянта ВПК-402 на водозаборе г. Новосибирска, проведенные в осенний паводок, показали его высокую эффективность при низкой температуре воды [38].
Влияние флокулянтов – анионного Магнафлока LT27 и катионного Магнифлока LT 573C совместно коагулянтом СА на цветность и мутность очистки воды р. Днепр в условиях Днепровской водопроводной станции г. Киева рассмотрено в работах [22]. Опыты проведены по методике пробного контактного коагулирования-флокулирования [39]. При дозе СА 5 мг·л–1 повышение степени осветления и обесцвечивания воды обеспечивалось лишь небольшими дозами (0,01 – 0,05 мг·л–1) Магнафлока LT27, а превышение этих доз увеличивало цветность очищенной воды (см. табл. 1.8). Магнифлок LT 573С в малых дозах повышал цветность воды и только при больших дозах – 0,5 – 1,25 мг·л–1 (при дозе коагулянта 2,5 – 5,0 мг·л–1) снижал мутность и цветность очищенной воды (см. табл. 1.9). Предварительное озонирование и хлорирование воды не повышало эффективность водоочистки.
Таблица 1.7 - Влияние флокулянта ВПК-402 и сульфата алюминия на качество очистки воды на водопроводной станции г. Ростова-на-Дону
Показатели | Среднегодовые данные | |||
1993 г. (сульфат алюминия) | 1995 г. (ВПК-402) | |||
р. Дон | Вода очищенная | р. Дон | Вода очищенная | |
Цветность, град | 17 | 7 | 18 | 8 |
рН | 8,2 | 7,8 | 8,1 | 7,8 |
Сухой остаток, мг·л–1 | 928 | 924 | 781 | 780 |
Жесткость общая, мг·л–1 | 7,75 | 7,75 | 6,57 | 6,57 |
Щелочность, мг·л–1 | 3,6 | 3,4 | 3,4 | 3,3 |
Хлориды, мг·л–1 | 154 | 156 | 115 | 117 |
Сульфаты, мг·л–1 | 280 | 278 | 230 | 229 |
Аммиак, мг·л–1 | 0,37 | 0,13 | 0,43 | 0,15 |
Нитриты, мг·л–1 | 0,058 | 0,003 | 0,0057 | 0,005 |
Нитраты, мг·л–1 | 3,88 | 3,03 | 3,59 | 2,75 |
Железо, мг·л–1 | 0,40 | 0,17 | 0,58 | 0,23 |
Алюминий, мг·л–1 | 0,07 | 0,18 | 0,07 | 0,08 |
Цинк, мг·л–1 | 0,012 | 0,009 | 0,009 | 0,001 |
Медь, мг·л–1 | 0,021 | 0,016 | 0,020 | 0,016 |
Марганец, мг·л–1 | 0,054 | 0,028 | 0,110 | 0,084 |
Нефтепродукты, мг·л–1 | 0,15 | 0,05 | 0,100 | 0,05 |
Таблица 1.8 - Влияние флокулянта Магнафлока LT27 и сульфата алюминия на качество очистки воды при 3°С
Дозы реагентов, мг·л–1 | Очищенная вода | ||
Al2(SO4)3 | Магнафлок LT | Цветность, град | Мутность, мг·л–1 |
0 | 0 | 23,0 | 0,5 |
0,02 | 0 | 21,0 | 0,5 |
0,02 | 0,01 | 18,0 | 0,3 |
0,02 | 0,02 | 18,0 | 0 |
0,02 | 0,05 | 18,0 | 0 |
0,02 | 0,07 | 21,0 | 0 |
0,02 | 0,10 | 21,0 | 0 |
0,02 | 0,30 | 22,0 | 0 |
Таблица 1.9 - Влияние флокулянта Магнафлока LT27 и сульфата алюминия на качество очистки воды при 4°С
Дозы реагентов, мг·л–1 | Очищенная вода | ||
Al2(SO4)3 | Магнафлок LT | Цветность, град | Мутность, мг·л–1 |
0 | 0 | 23,0 | 4,0 |
0,02 | 0 | 18,0 | 0,4 |
0,02 | 0,015 | 15,0 | 0,4 |
0,02 | 0,025 | 15,0 | 0,4 |
0,02 | 0,050 | 15,0 | 0,4 |
0,02 | 0,150 | 15,0 | 0,4 |
0,02 | 0,250 | 15,0 | 0,4 |
0,02 | 0,500 | 14,5 | 0,4 |
В работе [40] оценено качество очистки воды из поверхностных источников в питьевой водоподготовке при совместном использовании СА и различных флокулянтов – катионных Праестолов 611 и 650 (сополимеры АА с N-акриламидопропил-N,N,N-триметиламмонийхлоридом), анионных Праестолов 2530 и 2540, ПАА производства г. Ленинск-Кузнецкий, неионного ПАА АО «Бератон» (г. Березники), неионного ПАА Н-600 производства Завода им. С.М. Кирова (г. Пермь) и композиционного коагулянта-флокулянта КФ-91 производства КПП г. Волжский. Отмечено наиболее эффективное снижение остаточного алюминия и фитопланктона в воде, а также увеличение скорости седиментации при использовании Праестола 650 в весенний и летний периоды года и Праестола 2515 в зимних условиях (оптимальные дозы флокулянтов составляли 0,05 – 0,2 мг·дм–3).
Результаты опытно-промышленных испытаний бинарных реагентов – СА и ОХА с Праестолом 650 и ПАА Н-600 при водоочистке на водопроводной станции г. Екатеринбурга показаны в табл. 1.10.
Таблица 1.10 - Влияние флокулянта Магнафлока LT27 и сульфата алюминия на качество очистки воды при 4°С
Показатели | Двухступенчатая очистка | Контактное коагулирование | ||||||
К2+Ф1 | К2+Ф2 | К1+Ф1 | К1+Ф2 | К2+Ф1 | К2 | К1+Ф1 | К1 | |
Цветность | 84,3 | 76,3 | 82,4 | 70,0 | 80,5 | 72,4 | 79,5 | 70,0 |
Мутность | 72,1 | 65,5 | 69,5 | 64,5 | 78,0 | 74,0 | 60,4 | 55,4 |
Окисляемость | 69,7 | 61,3 | 64,4 | 62,2 | 73,0 | 62,0 | 69,9 | 55,9 |
Железо (общ.) | 86,2 | 79,4 | 84,5 | 80,3 | 83,2 | 78,0 | 77,9 | 75,4 |
ХПК | 51,2 | 35,1 | 48,2 | 40,1 | 58,9 | 45,2 | 48,6 | 39,8 |
Гуминовые кислоты | 57,6 | 41,4 | 53,5 | 44,7 | 56,3 | 44,3 | 55,1 | 43,8 |
Фульвокислоты | 50,6 | 45,3 | 48,2 | 43,0 | 54,4 | 47,0 | 42,8 | 39,6 |
Обработка воды Праестолом 650 по сравнению с ПАА Н-600 позволила в 2,5 – 3 раза снизить расход флокулянта и получить очищенную воду, качество которой соответствует нормативным показателям. Сочетание при водоочистке Праестола 650 с СА или ОХА обеспечило более высокую очистку воды по цветности, ХПК, окисляемости, содержанию железа, гуминовых и фульвокислот. Содержание статочного алюминия снижено до минимального предела обнаружения в воде, доза коагулянта снижена на 10 – 15% и увеличена производительность очистных сооружений за счет более высокой степени очистки воды.