Даже запуск ракеты сказывается негативно на состоянии окружающей среды. Отработанные газы отравляют биосферу, прохождение ракеты в атмосфере влияет на её состав и движение, возвращение ступени ракеты создаёт угрозу живым существам.
В результате полётов больших космических аппаратов челночного типа на высоте 250 – 450км. (где плотность ионосферной плазмы достигает своего максимума) происходят изменения в ионосфере[37], вплоть до образования так называемых «ионосферных» дыр. В результате на естественный ход физико-химических процессов в атмосфере и в других компонентах биосферы оказывается сильное воздействие.
Космос всё больше засоряется «космическим мусором»[38]. Отдельно надо сказать о радиоактивном космическом мусоре[39]. Всё это может попасть на Землю и привести к катастрофе.
Нужно поставить новые задачи перед космонавтикой, нацеливая на поиск ещё неизвестных возможностей в развитии космической техники и заняться вопросами экологической безопасности космоса.
В 1995 году в Российской Федерации создан проблемный совет №6, который занимается этой проблемой, кроме того, вступил в силу документ «Общие требования по ограничению техногенного засорения околоземного космического пространства», который требует возвращать из космоса отработанные спутники и другие аппараты.
Билет №15
1.Продуктивность и биомасса как показатель состояния экосистемы.
Одно из важнейших свойств организмов, их популяций и экосистем в целом – способность создавать органическое вещество, которое называется продукцией. Образование продукции в единицу времени (час, сутки, год) на единице площади (м2, га) или объёма (м3) характеризует продуктивность экосистем. Продукция и продуктивность могут определяться для экосистем в целом или для отдельных групп организмов.
Продукцию растений называют первичной, а животных – вторичной. Наряду с продукцией различают биомассу[40]. Биомасса и продуктивность обычно выражаются через абсолютно сухой вес. Величина биомассы экосистем или их звеньев во многом зависит не столько от их продуктивности, сколько от продолжительности жизни организмов и экосистем в целом. Продукция и биомасса экосистем – это не только ресурс, используемый в пищу или в качестве различных водоёмов сырья. От них в прямой зависимости находятся средообразующая и средостабилизирующая роль экосистем (с продуктивностью растений тесно связана интенсивность поглощения СО2 и выделение О2, биомасса является здесь основным резервуаром концентрации углерода, т.е. СО2 выводится из процессов круговорота на длительное время).
Есть и другие экологические системы продуктивности и биомассы экосистем. В частности, чем больше биомасса, тем сильнее её контакт с окружающей средой.
2. Проблемы обеспечения питьевой водой.
Ресурсы пресных вод Земли формируются в процессе глобального круговорота воды, который является опреснителем вод и способствует их непрерывному возобновлению. На планете пресная вода составляет всего 3% от общих запасов, причём ¾ пресной воды составляют льды Арктики и Антарктиды, пятая часть – подземные воды. Лишь 1% - реки и озёра. Общее потребление воды постоянно растёт (в начале 20 столетия человечество потребляло – 400 м3 воды в год, сейчас более 4000м3). В результате этого происходит истощение ресурсов пресной воды, кроме того, пресную воду используют на хозяйственные нужды, что приводит к загрязнению источников и безвозвратного расходования воды.
Известны основные виды мирового потребления воды:
a) снижение водоёмкости;
b) переход на замкнутое оборотное водоснабжение;
c) почвенная биологическая очистка;
d) использование сточных вод на земледельческих полях орошения.
Билет №16
1. Экологические пирамиды.
Если количество энергии, продукции, биомасс или численности организмов на каждом трофическом уровне изображать в виде прямоугольника в одном и том же масштабе, то их распределение будет иметь вид пирамид.
Правило пирамид энергии можносформулировать так:
«Количество энергии, содержащейся
в организмах на любом последующем
трофическом уровне цепи питания,
меньше её значений на предыдущем
рис.1 уровне» (см. рис. 1)
Количество продукции, образующейся в единицу времени на разных трофических уровнях, подчиняется тому же правилу, которое характерно для энергии: на каждом последующем уровне количество продукции меньше, чем на предыдущем.(рис.1). Более того, суммарное количество вторичной продукции (как и содержащейся в ней энергии), образующейся на разных трофических уровнях, меньше первичной продукции. Эта закономерность абсолютна и легко объясняется исходя из правила передачи энергии в цепях питания. Следует иметь в виду, что различия в количестве энергии, содержащейся в единице веса отдельных видов продукции не велики: 1г (сухой вес) растительной и животной продукции содержит чаще всего от 3 до 5 калорий энергии.
Пирамиды биомасс сходны с таковыми для энергии и продукции, но только для сухопутных экосистем. Для водных - закономерности
соотношения биомасс на различныхтрофических уровнях имеют свою
специфику. Пирамида биомасс как бы
Рис. 2 перевёрнута (см. рис. 2), т.е. биомасса животных, потребляющих растительную продукцию, больше биомассы растительных организмов. Причина – резкие различия в продолжительности жизни организмов сравниваемых уровней. Первый уровень (продуценты[41]) представлен фитопланктоном[42] с коротким периодом жизни, второй более живучий - зоопланктон[43] или другими организмами, которые накапливают биомассу годами и десятилетиями.
Пирамида чисел свидетельствует, что количество организмов уменьшается от основания к вершине. Это правило не абсолютно и применимо в основном к цепям питания, не включающим редуцентов[44]. Пример: насекомые и их личинки – насекомоядные животные – хищники.
2. Энергетическая потребность человечества при сохранении нормальных экологических условий жизни.
По мере истощения запасов горючих ископаемых, усложнения их добычи усиливают трудности в обеспечении человечества необходимой энергией. Это обстоятельство определило бурное развитие атомной энергетики во 2ой половине 20 века. Но опыт эксплуатации атомных электростанций высветил 2 круга проблем: небезопасная работа атомных реакторов и захоронение атомных отходов.
Таким образом, для удовлетворения будущих энергетических потребностей человечеству нужно искать в повышении эффективности использования энергии и ускоренном освоении её видов, которые сохраняет нормальные экологические условия жизни.
Особый интерес среди безопасно-экологических источников энергии вызывает использование энергии ветра, геотермальных вод. Важным резервом пополнения энергоресурсов могут стать и биоэнергетические технологии. Как экологически безопасно огромен и потенциал Солнца, однако эти пути в больших масштабах ещё не разработаны. Самым безопасным является аккумулирование энергии Солнца посредствам фотосинтеза[45] в особо восприимчивых к свету виду деревьев и растений и последующее их использование, а также искусственный фотосинтез, который исследуется в настоящее время.
Тем самым будут сохранены невозобновимые ресурсы, а использование новых не приведёт к ненужным последствиям (как например, АЭС). Это и сохранит нормальные условия жизни, а также удовлетворит энергетическую потребность человечества.
Билет №17
1.Популяция в экосистеме: состав, численность, плотность.
Популяция[46] в изолированном виде нигде не встречаются в природе, входят в состав экосистем и являются одним из элементов их структур. Члены популяции одного вида оказывают друг на друга не менее значимое воздействие, чем физические факторы среды или другие обитатели конкретного биоценоза. В популяции проявляется в той или иной степени все формы связей, характерные для межвидовых отношений. Но наиболее ярко выражены взаимно-полезные и конкурентные. При половом размножении обмен генами превращает популяцию в относительно целостную генетическую систему.