Смекни!
smekni.com

Курс лекций по Экологии 2 (стр. 7 из 15)

Круговорот биологический (биотический) – явление непрерывного, циклического, закономерного, но неравномерного во времени и пространстве перераспределения вещества, энергии и информации в пределах экологических систем различного иерархического уровня организации - от биогеоценоза до биосферы. Круговорот веществ в масштабах всей биосферы называют «большим», а в пределах конкретного биогеоценоза – «малым» кругом биотического обмена (рис. 8).

Рис. 8. Схема большого биосферного круговорота по В.А. Радкевичу;

(S – энтропия)

Часть биологического круговорота, состоящая из круговоротов таких биогенных веществ, как углерод, вода, азот, фосфор, сера и тому подобное, называют биогеохимическим.

Некоторое количество вещества может на время выбывать из биологического круговорота (осаждаться на дне океанов, морей, выпадать в глубины земной коры и т.п.). Однако в результате протекания тектонических и геологических процессов (вулканическая деятельность, подъём и опускание земной коры, изменение границ между сушей и водой и др.) осадочные породы вновь включаются в круговорот.

Круговороты веществ от продуцентов к консументам различных уровней, затем к редуцентам, а от них вновь к продуцентам замкнуты не полностью. Если бы в экосистемах существовала их полная замкнутость, то не возникало бы никаких изменений среды жизни, не было бы почвы, известняков и прочих горных пород биогенного происхождения. Таким образом, биотический круговорот можно условно изобразить в виде незамкнутого кольца.

Часть веществ переходит от одного биогеоценоза к другому, от одной более крупной экосистемы к соседней. Даже кольца обмена экосистем мирового океана и суши планеты переплетены друг с другом.

Потери вещества из-за незамкнутости круговорота минимальны в биосфере (самой крупной экосистеме планеты). Информация в экосистемах теряется с гибелью видов и необратимыми генетическими перестройками.

Таким образом, каждая экосистема поддерживает своё существование за счёт круговорота биогенов и постоянного притока солнечной энергии. Круговорот энергии в экосистемах практически отсутствует, поскольку от редуцентов она возвращается к консументам в мизерных количествах. Считают, что коэффициент круговорота энергии не превышает 0,24 %. Энергия может накапливаться, сберегаться (т. е. преобразовываться в более эффективные формы) и передаваться из одной части системы в другую, но она не может быть снова пущена в дело, как вода и минеральные вещества. Единожды пройдя от растений-продуцентов через консументы к редуцентам, энергия выносится в околоземное и космическое пространство. При движении через экосистему поток энергии затрагивает в основном её биоценоз.

Закон биогенной миграции атомов В.И. Вернадского имеет важное практическое значение. Поскольку антропогенное воздействие на окружающую природную среду заключается прежде всего в воздействии на «живое вещество» планеты, то изменяются условия биогенной миграции атомов и создаются предпосылки для ещё более глубоких химических перемен в исторической перспективе. Таким образом, процесс может стать саморазвивающимся, не зависящим от желания человека и практически при глобальном размахе неуправляемым. Поэтому одной из самых насущных задач современности является сохранение живого покрова Земли в относительно неизменном состоянии.

Закон биогенной миграции атомов также определяет и необходимость первоочередного учёта воздействий на биоту при любых проектах «преобразования природы». Любые крупные ошибки в таких «усовершенствованиях»” ведут к деградации среды.

Продуценты, консументы, и редуценты экосистем, поглощая и выделяя различные вещества, взаимодействуют между собой чётко и согласованно. Органические вещества и кислород, образуемые фотосинтезирующими растениями, – важнейшие продукты питания и дыхания консументов. В то же время выделяемые консументами углекислый газ и минеральные вещества биогенами, необходимы продуцентам. Поэтому вещества в экосистемах совершают практически полный круговорот, попадая сначала в живые организмы, затем в абиотическую среду и вновь возвращаясь в живое.

Все живые организмы на Земле почти на 80 % состоят из воды. К числу наиболее важных и распространённых элементов относятся кислород, углерод, азот, фосфор и сера.

Круговорот углерода. В ходе фотосинтеза атомы углерода переходят из состава углекислого газа СО2 в состав органических веществ растительных клеток. Далее они переносятся по пищевым цепям, образуя ткани всех остальных живых существ экосистемы. Однако побывать в составе клеток живых организмов всех трофических уровней удаётся только малому числу атомов углерода, так как на каждом уровне большинство органических молекул расщепляется в процессе клеточного дыхания для получения энергии. После этого атомы углерода поступают в абиотическую часть окружающей среды в составе углекислого газа, чем завершается один цикл и создаются предпосылки начала другого. Аналогичным образом углерод возвращается в атмосферу при сжигании любых органических соединений, например, древесины, сухой травы или листьев, а также ископаемого топлива.

Вывод части углерода из естественного круговорота экосистемы и «резервирование» в виде ископаемых запасов органического вещества в недрах Земли является важной особенностью рассматриваемого процесса. В далекие геологические эпохи значительная часть фотосинтезируемого органического вещества не использовалась ни консументами, ни редуцентами, а накапливалась, а затем под действием высоких температур и давления за миллионы лет превратились в нефть, уголь и природный газ (в зависимости от исходного материала, продолжительности и условий пребывания в земле). Подобные процессы протекают и в настоящее время, но значительно менее интенсивно. Их результат - образование торфа.

Добыча ископаемого топлива в огромных количествах для обеспечения энергетических потребностей современного индустриального общества и сжигание его есть ни что иное, как замыкание круговорота углерода. Однако возможности растительности по поглощению углекислого газа ограничены. Возникает избыток СО2, приводящий к накоплению его в атмосфере, что способствует «парниковому» эффекту и серьёзным изменениям климата.

Круговорот фосфора. Из всех макроэлементов (элементов, необходимых для всего живого в больших количествах), фосфор - один из самых редких в доступных резервуарах на поверхности Земли.

В природе фосфор содержится в различных природных минералах (прежде всего в ряде горных пород) в виде фосфатов. Они растворимы в воде, но не летучи. При разрушении горных пород или выщелачивании атмосферными осадками соединения фосфора растворяются. Далее из водного раствора соединения фосфора поглощаются растениями и включается в состав их органических соединений.

По пищевым цепям фосфор последовательно переходит от растений к организмам всех трофических уровней и аналогично углероду в каждом из организмов велика вероятность окисления при клеточном дыхании фосфорсодержащего соединения, с целью получения необходимой для жизнедеятельности энергии. Принципиальное различие круговоротов фосфора и углерода состоит в наличии либо отсутствии газовой фазы на одном из этапов цикла. Углекислый газ в газообразном состоянии, попадая в воздух, свободно распространяется в атмосфере, переносясь на неограниченные расстояния, пока снова не будет усвоен растениями. В круговороте фосфора подобного этапа нет.

Попадая со сточными водами в водоёмы, фосфор насыщает, а порой перенасыщает их экологические системы. Обратно на сушу фосфор в естественных условиях возвращается в небольших количествах. Абсолютное большинство фосфатов образует донные отложения, и круговорот вступает в свою самую замедленную фазу. Лишь геологические процессы, протекающие миллионы лет, реально могут поднять океанические отложения фосфатов, после чего возможно повторное включение фосфора в описанный круговорот.

Фосфор и другие минеральные биогены циркулируют в пределах экосистемы лишь тогда, когда содержащие их «отходы» жизнедеятельности откладываются в местах поглощения соответствующего элемента. В естественных экосистемах преимущественно так и происходит. Однако вмешательство человека, заключающееся в сборе урожая, содержащего извлечённые из почвы биогены, и перемещение его на большие расстояния к местам потребления, нарушает круговорот. Отходы жизнедеятельности человека попадают преимущественно в водоёмы. Изъятие фосфора из почв полей в современном сельском хозяйстве компенсируется внесением минеральных фосфорных удобрений. В результате возникают многообразные последствия, разрушающие природные экосистемы.

Круговорот азота. Главный источник азота органических соединений - молекулярный азот атмосферного воздуха. Однако растения не способны усвоить его в газообразном виде. Особые – азотфиксирующие микроорганизмы обладают уникальной способностью превращать газообразный азот в форму доступную для растений, почва также обогащается органическим азотом. Таким образом, все естественные экосистемы полностью зависят от азотфиксирующих организмов

В водных экосистемах круговорот азота происходит аналогичным образом, причём в роли основных азотфиксаторов выступают сине-зелёные водоросли. Возврат азота в атмосферу (минерализация) есть результат деятельности бактерий-денитрификаторов, разлагающих нитраты до свободных азота и кислорода. Для поддержания интенсивности круговорота азота при современном земледелии (так же, как круговорота фосфора и прочих биогенов) возникающий недостаток азота в почве искусственно компенсируется внесением синтетических минеральных удобрений. При неразумном применении удобрений в сельском хозяйстве избыток нитратов смывается с полей и попадает в водоёмы, что способствует их загрязнению.