Окисляемость определяют обработкой исследуемой воды марганцевокислым калием (пермангнатная окисляемость).
Определение окисляемости является не только способом установления концентрации органических веществ, но в сочетании с другими показателями, например с цветностью, может служить и методом определения их происхождения.
Азотсодержащие вещества (ионы аммония, нитритные и нитратные ионы) образуются в воде в результате разложения белковых соединений, попадающих в нее почти всегда со сточными бытовыми водами, сточными водами коксобензоль-ных, азотнотуковых и других заводов. Белковые вещества под действием микроорганизмов подвергаются распаду, конечный продукт которого — аммиак. Наличие последнего свидетельствует о загрязнении воды сточными водами.
Сухой остаток и потеря при прокаливании. О количестве солей, содержащихся в природных водах, можно судить по величине сухого остатка и потере массы при прокаливании. Сухой остаток, образующийся при выпаривании определенного объема воды, предварительно профильтрованной через бумажный фильтр, состоит из минеральных солей и нелетучих органических соединений. Органическая часть сухого остатка воды определяется потерей его при прокаливании.
Наличие в воде большого количества сульфатов нежелательно, так как сульфат натрия, например, нарушает деятельность желудочно-кишечного тракта, а сульфаты кальция и магния повышают некарбонатную жесткость воды.
Сульфаты и хлориды в определенных концентрациях являются причиной коррозийной активности (агрессивности) воды.
Воды, содержащие большое количество сульфатов, оказывают разрушающее действие на бетонные конструкции.
Щелочность воды. Под общей щелочностью воды подразумевается сумма содержащихся в воде гидроксильных ионов (ОН) и анионов слабых кислот, например угольной (ионов НСОз, СОз). Поскольку в большинстве природных вод преобладают углекислые соединения, различают обычно лишь гидрокарбонатнуюи карбонатнующелочность. При некоторых приемах обработки воды и при рН ее выше 8,5 возникает гидратная щелочность.
Щелочные металлы. Изионов щелочных металлов в воде наиболее распространены Naи К, попадающие в воду в результате растворения коренных пород. Основным источником натрия в природных водах являются залежи поваренной соли. В природных водах натрия содержится больше, чем калия. Это объясняется лучшим поглощением последнего почвами, а также большим извлечением его из воды растениями.
Жесткость воды. Жесткость природных вод обусловливается наличием в них солей кальция и магния. Ионы Са2+ поступают в воду при растворении известняков под действием содержащейся вводе углекислоты водой гипса
СаС03 + Н20 + С02 <± Са2+ + 2НСОо
.
Основным источником ионов магния служат доломиты, также растворяющиеся водой в присутствии углекислоты.
Хотя указанные соли и не являются особо вредными для организма, наличие их в воде в больших количествах нежелательно, так как вода становится непригодной для хозяйственно-питьевых нужд и промышленного водоснабжения. В жесткой воде плохо развариваются овощи, перерасходуется мыло при стирке белья. Жесткая вода непригодна для питания паровых котлов; ее нельзя использовать во многих отраслях промышленности .
Общая жесткость воды представляет собой суммы карбонатной (временной) и некарбонатной (постоянной) жесткости.
Карбонатнаяжесткост ь, связанная с присутствием в воде в основном гидрекарбонатов кальция или магния, почти полностью удаляется при кипячении воды. Гидрокарбонаты при этом распадаются с образованием углекислоты, в осадок выпадают карбонаты кальция и гидроксид магния.
Некарбонатнаяжесткость обусловливается присутствием кальциевых и магниевых солей серной, соляной •и азотной кислот и кипячением не устраняется.
Жесткость воды представляет сумму эквивалентных концентраций ионов Са2+ и Mg2+ и выражается в миллиграмм-эквивалентах на 1 л; 1 мг-экв/л жесткости отвечает 20,04 мг/л ионов Са'2+ или12,16 мг/л ионов Mg2+.
Железо имарганец. Железо в природных водах может находиться в виде ионов Fe2 и Fe3, неорганических (Fe(OH)3, Fe(OH)2, FeS) и органических коллоидов, комплексных соединений (главным образом органических комплексных соединений железа) и тонкодисперсной взвеси (Fe(OH)3, Fe(OH)2, FeS). В поверхностных водах железо содержится в виде органических комплексных соединений, коллоидов или тонкодисперсных взвесей. В подземных водах при отсутствии растворенного кислорода железо обычно находится в виде солей железа (II). Форма, в которой присутствуют в природных водах железо и марганец, зависит от величины рН и содержания кислорода.
Обычно содержание железа и марганца не превышает нескольких десятков миллиграммов в 1 л воды. Хотя вода, содержащая и более высокие количества этих ионов, совершенно безвредна для здоровья, все же для питьевых, промышленных и хозяйственных целей она непригодна, так как имеет неприятный чернильный или железистый привкус.
Наличие в воде железа и марганца может приводить к развитию в трубопроводах железистых и марганцевых бактерий, использующих в процессе своей жизнедеятельности энергию, выделяемую при окислении соединений с низшей в соединения с высшей валентностью. Продукты жизнедеятельности бактерий накапливаются в таких количествах, что могут значительно уменьшить сечение водопроводных труб, а иногда и полностью их закупорить.
Соединения кремния. Кремний присутствует в природных водах в виде минеральных и органических соединений. Выщелачивание силикатных пород обогащает природные воды кремниевой кислотой и ее солями. Кремниевая кислота очень слабая и диссоциирует на ионы в незначительной степени.
Наличие соединений кремния в питьевой воде не вредно для здоровья. Если же вода используется для питания паровых котлов высокого давления, содержание самого незначительного количества кремниевой кислоты недоступно из-за образования плотной силикатной накипи.
Соединения фосфора. Фосфор встречается в воде в виде ионов ортофосфорной кислоты или органического комплекса, а также в виде взвешенных частиц органического и минерального происхождения. Соединения фосфора содержатся в природных водах в ничтожных количествах, однако имеют огромное значение для развития растительной жизни в водоемах.
Растворенные в воде газы. Из растворенных в воде газов наиболее важными для оценки ее качества являются углекислота, кислород, сероводород, азот и метан. Углекислота, кислород и сероводород при определенных условиях придают воде коррозийные свойства по отношению к бетону и металлам.
Углекислота встречается в больших или меньших количествах во всех природных водах. Подземные воды обогащаются углекислотой за счет разложения органических соединений в воде и почвах, а также вследствие протекающих в глубине геохимических процессов.
Уменьшение содержания С02 в природных водах может происходить благодаря выделению углекислоты в атмосферу, растворению карбонатных пород с образованием гидрокарбонатов или в результате фотосинтеза.
Агрессивные свойства углекислоты основаны на ее способности взаимодействовать с карбонатными породами и переводить их в растворимые в воде гидрокарбонаты, а также на некотором снижении рН среды, в результате чего усиливается электрохимическая коррозия некоторых металлов, например железа.
Углекислота не является коррозионным агентом, непосредственно воздействующим на металл. Действие ее заключается в растворении карбонатов составных частей ржавокарбонатных отложений, которые образуются в водопроводной сети. В результате этого процесса происходят дальнейшая коррозия материала труб и образование новых отложений; вода приобретает желтую или красноватую окраску, неприятный вкус и содержит мелкие комья рыхлых железистых веществ.
Кислород может находиться в природных водах в различных концентрациях (0—14,6 мг/л), что определяется интенсивностью противоположно направленных процессов, влияющих на содержание кислорода в воде. Обогащение воды кислородом происходит за счет растворения его из воздуха (в соответствии с парциальным давлением кислорода и температурой воды) и выделения водной растительностью в процессе фотосинтеза
Окисление некоторых примесей воды, гниение органических остатков, брожение, дыхание организмов понижают содержание кислорода в воде. Резкое уменьшение содержания кислорода в воде по сравнению с нормальным свидетельствует о ее загрязнении.
Определение концентрации кислорода имеет большое значение при изучении физико-химического режима водоема, его самоочищения и биологической жизни.
Кислород интенсифицирует процессы коррозии металлов, поэтому в водах, которые используются для теплоэнергетических систем, количество растворенного кислорода лимитируется.
Сероводород попадает в природные воды в результате их соприкосновения с гниющими органическими остатками (сероводород органического происхождения) либо с некоторыми минеральными солями (гипсом, серным колчеданом и др.). Последние, восстанавливаясь и разлагаясь, выделяют сероводород (сероводород неорганического происхождения).
Наличие в воде сероводорода органического происхождения свидетельствует о загрязненности водоисточника.
Сероводород необходимо удалять из воды, используемой для хозяйственно-питьевого или промышленного водоснабжения.
Азот попадает в природные воды при поглощении его из воздуха, восстановлении соединений азота денитрифицирующими бактериями, а также в результате разложения органических остатков. Несмотря на меньшую по сравнению с кислородом растворимость азота содержание последнего в природных водах больше из-за более высокого парциального давления его в воздухе.