Смекни!
smekni.com

Перспективные методы утилизации твердых промышленных отходов (стр. 5 из 10)

В ЦНИИЭП инженерного оборудования разработаны типовые проекты установок глубокой очистки сточных вод посредством фильтров с песчаной загрузкой и пропускной способностью 10, 17 и 25 тыс. м3/сут [38]. Особый интерес представляют конструкции каркасно-засыпных фильтров (КЗФ), обеспечивающих высокую эффективность процесса.

Челябинским ВНИИВОДГЕО разработана конструкция каркасно-засыпных фильтров с засыпкой из гравия с крупностью зерен 40 – 60 мм и песка, 0,8 – 1,0 мм. Скорость фильтрации – 10 м/ч, продолжительность фильтроцикла – 20 ч при средней концентрации веществ до 20 мг/л. [38]

Фильтры с плавающей загрузкой из вспененного полистирола можно применять для очистки сточных вод предприятий металлургии, химической и легкой промышленности. Преимуществами данного способа очистки экономичность, простота конструкции, долговечность, надежность очистки [23].

Фильтры с пенополиуретановой загрузкой могут применяться для очистки стоков от нефтепродуктов и масел в не эмульсионном состоянии. Скорость фильтрования 10 м/ч, продолжительность фильтроцикла при оптимальном режиме 50 – 60 ч., при форсированном 27 – 36 ч. Грязеемкость при оптимальном режиме 8,8 – 17,0 кг/м3, при форсированном 6,8 – 9,6. [38]

Напорные сверхскоростные фильтры позволяют получить эффективность очистки 70 – 80 %. Значительными преимуществами обладают автоматические напорные сверхскоростные фильтровальные [38, 26, 24].

4. 2. Физико-химические методы очистки сточных вод

Физико-химические методы очистки сточных вод пригодны для использования на предприятиях различных отраслей и могут применяться как самостоятельно, так и в комплексе с другими способами очистки и переработки сточных вод.

Методы коагуляции и флокуляции могут применяться на предприятиях химической, нефтехимической, нефтеперерабатывающей, легкой промышленности. Сорбционные методы, с использованием в качестве сорбентов золу, торф, коксовую мелочь, селигатели, активированные угли различных марок, наиболее эффективны для извлечения из сточных вод ценных растворенных веществ с их последующей переработкой и использованием, а очищенные воды пригодны для оборотного водоснабжения промышленных предприятий.

В качестве одного из перспективных методов выделения из сточных вод взвешенных веществ могут быть использованы конструкции и методы флотации. Флотация применима для удаления ПАУ, нефтепродуктов и масел, волокнистых компонентов. Наиболее широкий диапазон в технологических схемах очистки сточных вод имеет принцип напорной флотации. Для очистки вод с высокой концентрацией нерастворенных загрязнителей и содержащих нефть и нефтепродукты целесообразно внедрение в эксплуатацию импеллерных установок, которые обеспечивают высокую эффективность очистки.

Очистка стоков методом ионного обмена позволяет извлекать и утилизировать ценные компоненты сточных вод: цветные металлы, ПАУ, радиоактивные вещества – очищать сточные воды до ПДК с последующим использованием вод в замкнутых технологических процессах предприятий. [23]

Одним из перспективных направлений очистки сточных вод является применение мембранных технологий: обратный осмос, ультра- и микрофильтрация – наиболее универсальные, экономически целесообразный и экологически безопасные методы обработки сточных вод [38, 37, 18]. Самым производительным из этих методов является способ ультрафильтрации, пригодный для очистки сточных вод предприятий целлюлозно-бумажной, химической, нефтехимической, металлургической, пищевой, пищевой, микробиологической отраслей промышленности и при гальванопроизводстве. Методы ультра- и микрофильтрации обладают высокой эффективностью очистки, невысокими энергозатратами, простотой и компактностью установок, автоматизацией и экологичностью процесса [37].

Существуют различные типы гиперфильтрационных и ультрафильтрационных аппаратов, отличающихся способами размещения мембран: с плоскокамерными, трубчатыми, рулонными или спиральными фильтрующими элементами и с мембранами из полых волокон малого диаметра.

Таблица

Характеристика некоторых ультрафильтрационных мембран [37]

Области применения Характеристика мембран
Диаметр пор, нм

Удельная

произв-ть, л/м2

Жирная вода пищевых предприятий 20 ± 2,5 33,5 – 57
Маслосодержащие воды автотранспортныхпредприятий 30 ± 5 66 – 132
Сточные воды масложирной промышленности,эмульсии нефтепродуктов 50 100 – 200
Малоэмульсионные воды металлургическихпредприятий,моющие растворители, промывные воды автомоек 50 100 – 600
Малоэмульсионные воды металлургическихпредприятий 4,3
Маслосодержащие стоки автотранспортных и металлургических предприятий 45 ± 5 186 - 294

4. 3. Биологическая очистка сточных вод

На современном этапе развития науки и техники биоочистка является основным и наиболее перспективным методом удаления загрязнений из сточных вод, т.к. обеспечивает достаточно глубокий распад веществ и основан на использовании природных процессов и катализаторов.

Среди биологической очистки наибольшее распространение получил аэробный метод [23], который постоянно продолжает совершенствоваться. Постоянно разрабатываются новые типы агрегатов, модифицируются существующие конструкции.

Путем интенсификации процесса биологической очистки путем применения высоконагружаемых одноступенчатых систем, установок, совмещающих биоочистку с ионизацией и использования для аэрации чистого кислорода [24, 8].

В стране и за рубежом все более широкое распространение получают двухступенчатые биологические системы обработки сточных вод, т.к. обеспечивают более глубокую очистку вод, нежели одноступенчатые [23].

Для очистки сточных вод, содержащих токсичные вещества, можно использовать аэротенки-смесители [38].

Совсем недавно был разработан метод с использованием биокоагулянта – раствора трехвалентного железа в культуре ThibascillusFerrooxidans, используемого для осаждения тяжелых металлов и фосфора из промышленных сточных вод. С помощью данной культуры их сточных вод биологических очистных сооружений возможно растворение металлической стружки. Полученный биокоагулянт с содержанием трехвалентного железа до 50 г/л использовался для доочистки производственных сточных вод от тяжелых металлов и фосфора. При этом количество фосфора уменьшается в 100, хрома в 40, меди в 10 раз и достигает ПДК. При переработке биокоагулянта можно получить железооксидные пигментные материалы, используемые в лакокрасочной промышленности [10].

Сложившаяся обстановка на промышленных предприятиях свидетельствует об исчерпании возможности традиционных экстенсивных способов развития очистных сооружений. В настоящее время необходим качественно новый подход к развитию и обновлению технологий очистки сточных вод и переработки осадков [10].

4. 4. Термическая обработка осадков сточных вод

Проблема утилизации промышленных сточных вод сводится далеко не только к методам их очистки. Необходим и поиск совершенных технологий переработки осадков жидких отходов, обеспечивающих экологические требования.

До недавнего времени задачу обезвреживания осадка и избыточного активного ила в основном решали сооружения иловых картов, что вызывало вторичное загрязнения окружающей природной среды. Важной проблемой было и остается до сих пор присутствие в осадках неутилизируемых компонентов: концентрированных нелетучих веществ, токсичных веществ, тяжелых металлов.

Анализ мирового опыта показывает, что в создавшихся условиях наиболее приемлемым методом остается депонирование осадков непосредственно на иловых картах (терм).

Объем накопленных осадков можно сокращать за счет повышения их влагоотдачи и вследствие деструкции органической компоненты.

Для высокой эффективности технологического процесса целесообразно создавать полную герметизацию с помощью оболочки-покрытия из полимерного материала с откачиванием из-под него образующихся испарений и газов. Эластичное покрытие легко адаптируемо к реальной конфигурации существующих карт, таким образом, создает замкнутое технологическое пространство, в котором отходы можно подвергнуть обработке без контакта с окружающей средой. [7]

Наиболее перспективным методом обезвреживания таких отходов следует считать термический метод, гарантирующий наиболее полную деструкцию с образованием газовой фазы.

В результате термографических исследований осадков, накопленных на иловых картах БОС г. Стерлитамак, исследователям удалось выяснить, что в интервале температур 125 – 195 ºС происходит переход в газообразное состояние механически связанной воды в осадке. Наблюдалось уменьшение массы образца, происходящее с поглощением тепла.

В дальнейшем, при увеличении температуры до 300 – 415 ºС, происходило уменьшение массы осадка, вызванное выгоранием органики. В этом интервале температур протекали экзотермические процессы.

Дальнейший нагрев осадка происходил с выделением тепла при практически постоянном уменьшении массы образца в интервале 800 – 900 ºС.

Далее осадок не претерпевал заметных изменений массы.

Аналогичные термографические исследования проводились и для влажного осадка, отобранного непосредственно на иловых картах. Основная потеря массы навески образца происходила за счет удаления влаги из осадка (75 – 175 ºС, при максимуме потери массы при 120 ºС. При 300 – 415 ºС практически не наблюдалась деструкция органики (в отличие от того же интервала при обработки сухого остатка), а при 800 ºС и выше масса навески перестала изменяться и прекратились превращения. Зольность осадка составила 9.9 % (на рабочую массу) или 55 % (на сухую массу). [6]