Процедуру расчета продолжают до удовлетворения отклонения требованиям критерия. Полученное для скорректированной выборки С принимают за значение местного фона для данного элемента.
Процедура расчета местного геохимического фона
1 .По данным выборки содержания химических элементов в донных отложениях рассчитать основные параметры распределения (С, S, V) для элемента.
Среднее значение-
Стандартное отклонение-
Коэффициент вариации-
2. Определить максимальное отклонение
3.Определить максимальное относительное отклонение
4.Рассчитать критическое значение отклонения, используя табличное значение критерия Стьюдента при
где n – количество значений в выборке,
t (
5.Сравнить полученные значения отклонения. Если максимальное относительное отклонение превышает критическое значение, удаляем из выборки для расчета фона максимальное значение концентрации.
6. При скорректированной выборке повторить расчет. Среднеарифметическое значение концентрации в окончательном варианте принять за местный фон.
Примечание. Если в результатах анализа в какой-либо пробе отсутствует значение концентрации, для расчета принять '/2 величины предела обнаружения этого элемента. Если при определении какого-либо элемента данные не превышают 20% от общего количества- этот элемент отбрасывают из-за отсутствия данных.
Расчет среднего и максимального уровня загрязнения территории
Одна из главных характеристик геохимической антропогенной аномалии - ее интенсивность, которая определяется степенью накопления элемента- загрязнителя по сравнению с природным фоном.
Показателем уровня аномальности содержаний элементов является коэффициент концентрации КС, который рассчитывается как отношение содержания элемента в исследуемом объекте С к среднему фоновому содержанию СФ:
Оценка территории по уровню опасности загрязнения производится по показателю Zc, который рассчитывается по формуле
ZС=ΣКС- (n-1),
Причем при расчете ZС в формуле учитываются только коэффициенты концентрации больше единицы.
В расчетной части представлены исходные данные для расчета уровня загрязнения. В связи с отсутствием выборок по таким элементам, как Sr,Ti,W исключаем их из расчетов. Оценка уровня загрязнения производится на основании ориентировочной шкалы оценки уровня загрязнения почв.
Уровень загрязнения почвы | Zc токсичных элементов в почвах |
Допустимый | Менее 16 |
Умеренно-опасный | 16 -32 |
Опасный | 32 – 128 |
Чрезвычайно опасный | Более 128 |
Для расчета среднего уровня загрязнения участка исключают при помощи критерия Стьюдента статистически недостоверные значения содержаний элементов в пробах.
Если содержание элемента в точке неизвестно, принимаем его равным половине предела обнаружения.
При расчете суммарного показателя загрязнения ZC в формуле учитываем только коэффициенты КС>1, так как в нашем случае при этом интегральный показатель будет максимальным, что соответствует самой жесткой оценке уровня загрязнения.
Этапы и результаты расчета среднего уровня загрязнения территории представлены в расчетной части.
Средний уровень загрязнения территории соответствует Zc=31,76, т.е. умеренно опасный ур.
Формула геохимической ассоциации элементов в почвах представлена в расчетной части.
Расчет содержания элементов в сухом веществе растений
Анализ содержания химических элементов в растении проводится с озоленным материалом. Соответственно, определяются концентрации элементов в золе растений. Для пересчета содержания элементов в золе на содержание в сухом веществе растений используется понятие зольности. Зольность - отношение массы золы, образовавшейся из растительных остатков при их озолении, к массе исходного сухого вещества растений. Она характеризирует интенсивность накопления элемента в растении.
З=Мз/Мсух, доли ед.,%
Концентрация элемента в сухом веществе растения рассчитывается по следующей формуле:
Ссух=Сз*З
где Сз - содержание элемента в золе растения, мг/кг.
Поскольку данные по содержанию в золе растений Be, Sn, Ga, Co, V, Ge, La, Ag даны частично или отсутствуют вообще, исключаем эти элементы из расчета. Работать будем с осредненными значениями зольности и концентраций элементов в золе.
Почвенно-растительный коэффициент:
ПРК=Схзол/Схпочв
Результаты расчета приведены в расчетной части.
Выводы
На данной исследуемой территории доминирующими загрязнителями являются следующие элементы: Ag, Ge, Y, Yb, Pb,Ba.
Иттербий – редкий элемент, практическое применение этого элемента ограничено некоторыми специальными сплавами, главным образом на алюминиевой основе.
Итрий – стронций переходит в иттрий.
Аргентум содержится в почве в аномальных количествах. Будучи благородным металлом, серебро отличается относительно низкой реакционной способностью. Серебро - постоянная составная часть растений и животных. Его содержание в растениях составляет в среднем 0,006 мг на 100 г сухого вещества. Однако это тяжёлый металл и является клеточным ядом, ксенобиотикам: ионы серебра замещают ионы микроэлементов в ферментах, например (Со), ответственных за метаболизм и размножение. Это приводит к нарушению функции клетки и к её гибели. Серебро применяется для контактов электротехнических изделий, в составе припоев, сплавов, как драгоценный металл, а также в качестве катализатора в реакциях окисления.
Барий присутствует во всех органах растений; его содержание в золе растения зависит от количества Бария в почве и колеблется от 0,06-0,2 до 3% (на месторождениях барита). Для животных Барий (его растворимые соли) ядовит.
Барий и его соединения применяются в оптике, пиротехнике, ядерной энергетике, химической промышленности и др.
Проанализировав вышеизложенное можно сделать вывод, что основными источниками поступления данных элементов в ручей, и в почву – это поверхностный сток с автомагистралей, приусадебных участков, заводы ФЭД, ХАЗ, а также завод пиротехнических изделий.
На основе геохимических данных о содержании химических элементов в крапиве на данном участке была проведена оценка уровня и опасности загрязнения территории. На основании расчётов были составлены ряды геохимической активности. Наиболее активно данный вид накапливает следующие элементы: Вa, Pb,Mo, P, Sr, Cu, Ag.
В данной работе был проведен корреляционный анализ с целью установления связи между концентрациями в почвах и растениях. (Приложение 4) В результате было установлено, что связь присутствует. Из этого следует, что крапива накапливает вещества из почвы и частично из атмосферы. А в почве накапливается из атмосферы и с водным потоком. Пыль в своем составе содержит токсические металлы, в том числе и Sr. Оседая на листьях крапивы, они поглощаются.
Согласно шкале оценки уровня загрязнения водных систем, исследуемый участок имеет умеренно-опасный уровень загрязнения. В точке Л24 (Zc = 123,8)максимальное уровень загрязнения. Для данной территории требуется мероприятия по улучшению состояния территории. Полезно провести создание на загрязненном участке растительного покрова из растений, которые адаптированы к данным условиям, с целью закрепления поверхности почвы, снижения выноса в поверхностные водные объекты загрязнителей, которые адсорбируются на поверхности частиц почвы.
Список литературы
1. Экология города: Учебник. - К.: Либра, 2000
2. Фiзична географiя Харкiвськоi областi. О.О. Жемеров,Н.I. Мачача,
I.Ю. Лекарева - Харкiв: ХДУ, 1993
3. Методические указания для проведения учебной практики по курсу "Введение в специальность" для студентов 1-го курса специальности инженерная экология города. Составители Ю.Л. Коваленко, И.Е. Саратов, Л.П. Свиренко и др. - Харьков: ХИИКС, 1992
4. Методические указания к курсовой работе по дисциплине «Прикладная литоэкология и радиоэкология» Составители.: Свиренко Л.П., Дядин Д.В. – Харьков: ХНАМГ, 2007. – 18 с.