Экология рассматривает взаимодействие живых организмов и неживой природы. Это взаимодействие, во-первых, происходит в рамках определенной системы (экологической системы, экосистемы) а во-вторых, оно не хаотично, а определенным образом организовано, подчинено законам.
Таким образом, для естественной экосистемы характерны три признака:
- экосистема обязательно представляет собой совокупность живых и неживых компонентов.
- в рамках экосистемы осуществляется полный цикл, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие.
- экосистема сохраняет устойчивость в течение некоторого времени, что обеспечивается определенной структурой биотических и абиотических компонентов.
Примерами природных экосистем являются озеро и лес, пустыня и тундра, суша и океан, биосфера.
Как видно из примеров, более простые экосистемы входят в более сложно организованные. При этом реализуется иерархия организации систем, в данном случае экологических. Таким образом, устройство природы следует рассматривать как системное целое, состоящее из вложенных одна в другую экосистем, высшей из которых является уникальная глобальная экосистема – биосфера.[4]
Итак, экосистема является структурной важнейшей единицей устройства окружающего мира. Напомним, что экосистема - это совокупность живых организмов, обменивающихся непрерывно энергией, веществом и информацией друг с другом и с окружающей средой.
Рассмотрим сначала процесс обмена энергией. Энергию определяют, как способность производить работу. Свойства энергии описываются законами термодинамики. Применительно к энергии в экосистемах удобна следующая формулировка: процессы, связанные с превращениями энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную, то есть деградирует.[5]
Мера количества энергии, которая становится недоступной для использования, или иначе мера изменения упорядоченности, которая происходит при деградации энергии, есть энтропия.[6]
Чем выше упорядоченность системы, тем меньше ее энтропия. Таким образом, любая живая система, в том числе и экосистема, поддерживает свою жизнедеятельность благодаря, во-первых, наличию в окружающей среде в избытке даровой энергии (энергия Солнца); во вторых, способности за счет устройства составляющих ее компонентов эту энергию улавливать и концентрировать, а, использовавши - рассеивать в окружающую среду. Таким образом, сначала улавливание, а затем концентрирование энергии с переходом от одного трофического уровня к другому обеспечивает повышение упорядоченности, организации живой системы, то есть уменьшение ее энтропии.
Итак, жизнь в экосистеме поддерживается благодаря непрекращающемуся прохождению через живое вещество энергии, передаваемой от одного трофического уровня к другому. При этом происходит постоянное превращение энергии из одних форм в другие. Кроме того, при превращениях энергии часть ее теряется в виде тепла. Тогда возникает вопрос: в каких количественных соотношениях, пропорциях должны находиться между собой члены сообщества разных трофических уровней в экосистеме, чтобы обеспечивать свою потребность в энергии?
Весь запас энергии сосредоточен в массе органического вещества - биомассе, поэтому интенсивность образования и разрушения органического вещества на каждом из уровней определяется прохождением энергии через экосистему (биомассу всегда можно выразить в единицах энергии).
Скорость образования органического вещества называют продуктивностью. Различают первичную и вторичную продуктивность.
В любой экосистеме происходит образование биомассы и ее разрушение, причем эти процессы всецело определяются жизнью низшего трофического уровня - продуцентами. Все остальные организмы только потребляют уже созданное растениями органическое вещество и, следовательно, общая продуктивность экосистемы от них не зависит.
Высокие скорости продуцирования биомассы наблюдаются в естественных и искусственных экосистемах там, где благоприятны абиотические факторы, и особенно при поступлении дополнительной энергии извне, что уменьшает собственные затраты системы на поддержание жизнедеятельности.
Такая дополнительная энергия может поступать в разной форме: например, на возделываемом поле - в форме энергии ископаемого топлива и работы, совершаемой человеком или животным. Таким образом, для обеспечения энергией всех особей сообщества живых организмов экосистемы необходимо определенное количественное соотношение между продуцентами, консументами разных порядков, детритофагами и редуцентами. Однако для жизнедеятельности любых организмов, а значит и системы в целом, только энергии недостаточно, они обязательно должны получать различные минеральные компоненты, микроэлементы, органические вещества, необходимые для построения молекул живого вещества.
Одним из наиболее существенных свойств экосистем является наличие в них пищевых цепей и сетей.
Трофическая (пищевая) цепь – последовательность видов организмов, отражающая движение в экосистеме органических веществ и заключенной в них биохимической энергии в процессе питания организмов.[7]
Для дальнейшего изучения рассмотрим следующие термины: продуценты, консументы и редуценты.
Продуценты (от англ. to produce - производить) – организмы, производящие органические вещества из неорганических соединений.[8]
Продуцентами в экосистеме являются автотрофные организмы, преобразующие путем фотосинтеза внешнюю (солнечную) энергию в биохимическую энергию, заключенную в органическом веществе.
Примерами продуцентов в наземных экосистемах являются растения. Фитопланктон – мельчайшие водоросли – является другим примером продуцентов, характерных для морских и вообще водных экосистем.
Консументы (от лат. консуме – потреблять) – это организмы, питающиеся органическим веществом, произведенным другими организмами (продуцентами).
Такими организмами в экосистеме являются гетеротрофы. Различают консументы 1-го и 2-го порядков.
Консументы 1-го порядка – растительноядные организмы (например, овца, заяц).
Консументы 2-го порядка – плотоядные, которые строят свои белки из белков растительного и животного происхождения (хищники).
Редуценты – организмы (главным образом, бактерии, грибы и др.), превращающие органические остатки в неорганические вещества (минерализация).
В любой экосистеме можно выделить несколько трофических уровней или звеньев. Первый уровень представлен продуцентами, а второй и последующий уровни – консументами. Последний уровень в основном образуется микроорганизмами и грибами, питающимися мертвым органическим веществом (редуцентами).
Их основная функция в экосистеме – разложение органического вещества до исходных минеральных элементов. Взаимосвязанный ряд трофических уровней и представляет цепь питания; или трофическую цепь.
Важно подчеркнуть, что цепь питания не всегда может быть полной. Во-первых, в ней могут отсутствовать продуценты (растения). Такие цепи питания характерны для сообществ, формирующихся на базе разложения животных или растительных остатков, например, накапливающихся в лесах на почве (лесная подстилка).
Во-вторых, в цепях питания могут отсутствовать (либо находится в очень малом количестве) гетеротрофы (животные). Например, в лесах отмирающие растения или их части (ветви, листья и др.), т.е. продуценты, сразу включаются в звено редуцентов.
Трофические цепи в зависимости от числа уровней подразделяются на простые и сложные (многоуровневые) цепи.
Примером простой цепи, в которой представлены все три вида уровней (продуцент, консумент и редуцент), может служить следующая последовательность организмов:
ОСИНА – ЗАЯЦ - ЛИСА.
Простая трофическая цепь имеет три трофических уровня. Сложные цепи в отличие от рассмотренных выше простых имеют большее число уровней, но обычно не превышающее 5–6 в реальных природных экосистемах. Ниже приводится пример сложной пятиуровневой цепи:
ТРАВА - ГУСЕНИЦА - ЛЯГУШКА - ЗМЕЯ - ХИЩНАЯ ПТИЦА.
Различают три основных типа трофических цепей:
- цепи хищников
- цепи паразитов
- сапрофитные цепи.
Примеры трофических цепей хищников:
ТРАВА - ОВЦА - ВОЛК
ЛИСТ ДУБА - ГУСЕНИЦА - СИНИЦА - ЯСТРЕБ
Отличительной особенностью трофических цепей паразитов от цепей хищников является то, что в цепях хищников размеры особей увеличиваются по мере продвижения по уровням цепи (слева направо), а в цепях паразитов – наоборот.
Сапрофитные (от греч. сапрос – гнилой) цепи – это трофические цепи с разложением органического вещества, т.е. включающие редуцентов.
Например: к сапрофитам относятся организмы (грибы, некоторые растения и др.), питающиеся органическим веществом и преобразующие его в минеральные соединения. Ниже приведен пример такой трофической цепи: ЛИСТВЕННЫЕ ДЕРЕВЬЯ - ЧЕРВИ - ГРИБЫ.
В реальных природных экосистемах, включающих большое число видов организмов, функционируют и большое количество трофических цепей, причем некоторые виды участвуют одновременно в нескольких различных цепях питания, т е некоторые цепи образуют общие уровни.