Векторный слой – это совокупность простых геометрических объектов (точка, дуга, полигон). Другими словами, векторный слой – это пространственные данные, которые представляют те или иные объекты на местности. Например, как точечные объекты могут быть показаны населенные пункты, наблюдательные посты, места взятия проб грунта, атмосферного воздуха и т.д. Линейными объектами традиционно являются дороги, реки, административные границы и др. Такими объектами как полигоны представлены озера, квартальная застройка в городе, площадь и форма скверов и парков.
Каждому объекту векторного слоя присваивается индивидуальный пользовательский идентификатор для привязки к базе данных. Это обеспечивает привязку атрибутивной информации из базы данных к местности. Таким образом, основная идея связи пространственных данных с атрибутивными заключается в том, что пространственный объект на карте и содержащий информацию о нем объект базы данных имеют один и тот же идентификатор, который и служит связующим звеном [14].
Каждому тематическому слою ставят в соответствие одну или несколько таблиц, содержащих характеристики объектов слоя. Например, точечному слою "города" присоединяется таблица, где присутствует поле, в котором хранится идентификатор каждого объекта (города) и тогда с одним объектом на карте сопоставляется определенная одна запись – строка в таблице (название города, численность населения и т.д.), содержащей в поле идентификатора то же значение, что и идентификатор пространственного объекта на карте. Таким образом, объекту на карте присваивается необходимая атрибутивная информация, содержащаяся в группе записей, таблице и любом другом наборе данных.
Процесс создания тематических карт можно разделить на этапы.
Первый этап – это оцифровка существующих бумажных тематических карт или ввод тематической информации в ЭВМ. Для создания большинства тематических слоев исходным материалом для оцифровки служит тематический слой данных. На данной стадии происходит сопоставление спецификаций объектов с указанием необходимых атрибутивных данных в соответствии с тематическим заданием. Важной особенностью этого этапа является указание реперных точек для последующего пересчета векторного изображения из координат устройства ввода в систему координат, применяемую в текущей реализации электронной карты [15].
Каркасом для укладки тематического материала служит географическая основа и элементы местности, которые однозначно и сравнительно точно отображают на картах: гидрография, рельеф, болота, леса, населенные пункты и др. Приоритеты неподвижности сохраняются за гидрографией, автомобильными и железными дорогами, населенными пунктами. Редактируется, меняется именно тематическое содержание относительно общегеографического, а не наоборот. Иначе качество пространственной привязки тематических данных будет значительно ниже общегеографических [16,17].
Когда нет бумажной основы с тематическими данными, возникает задача восстановления непрерывных полей значений по дискретным данным, обладающим пространственной привязкой. Значения координат X и Y могут быть получены непосредственно с помощью объектов графического слоя, если мы отмечаем точку на векторном слое и присваиваем ей соответствующий идентификатор, автоматически получая ее координаты. В этом случае дискретные значения находятся в ГИС в виде векторного слоя. Координаты так же могут быть представлены в виде обычных баз данных, либо получены в результате расчетов.
На этом этапе необходимо построить заданную точками цифровую модель поверхности.
После создания векторного слоя с пространственной информацией по интересующей теме, идентификации его объектов и присоединении определенной атрибутивной информации из базы данных наступает этап визуализации и тематической раскраски. Здесь происходит выделение объектов слоя, создание так называемой картографической композиции, куда входят слои цифровой карты, правила и порядок их отображения, способы обрисовки объектов, библиотека условных знаков, тематические таблицы и др. [18].
Большинство широко распространенных инструментальных ГИС обладают широкими возможностями для тематической обработки карт и их визуализации. Среди них условное выделение цветовыми диапазонами, размерными символами, круговыми и столбчатыми диаграммами, плотностью точек и индивидуальных настроек. Для наиболее полного решения поставленной задачи имеется большое число символов для точечных объектов, стилей линей для линейных и штриховок, заливок – для полигонов.
Но для того, чтобы геоинформационная карта представляла собою модель реального мира, а не только систему накопления и хранения географических данных [19], необходимо выявить и проанализировать взаимосвязи и взаимозависимости между ее слоями. Это делается при помощи методов математической статистики, которые позволяют по выборкам, полученным с карт и снимков, определять средние величины и вариации, рассчитывать параметры распределения и показатели корреляции, выполнять многомерный факторный, компонентный и дисперсионный анализ и т. п. - словом, использовать весь арсенал математической статистики [20].
2.2 Методы расчетного прогнозирования уровней ЭМИ РЧ
Определение уровней ЭМП производится с целью прогнозирования электромагнитной обстановки в местах размещения ПРТО. На основе данных технических параметров ПРТО: рабочая частота, мощность излучения, тип антенны, вид модуляции, место и условия расположения на территории города, - рассчитываются распределения ЭМП вокруг радиоисточников. Расчеты выполнялись, используя методические указания (МУК 4.3.1677-03) [21]. В данной работе расчеты проводились при помощи "Программного комплекса анализа электромагнитной обстановки".
3. Формирование электромагнитного загрязнения в условиях городской среды
3.1 Анализ ПРТО г. Красноярска
На первом этапе исследования были изучены стационарные ПРТО. Была создана база данных, содержащая технические характеристики источников ЭМИ РЧ: рабочая частота, мощность излучения, тип антенны, вид модуляции, тип зданий, на которых размещались антенны, высоты размещения антенн, год ввода ПРТО в эксплуатацию. База данных представлена в табличном процессоре Ex и в программе Microsoft Access.
Информация об источниках ЭМИ РЧ за 2005 г, взятая из базы данных, представлена в виде диаграммы 1.
Проведенные исследования ЭМП радиочастотного диапазона (30кГц-300ГГц) г. Красноярска показали, что наибольший вклад в формирование электромагнитной нагрузки (ЭМН) селитебных зон города – 82,81% – вносит сотовая связь.
С целью пространственного распределения источников излучения ЭМП были построены тематические слои карты г. Красноярска за 2003 г. и 2005 г., на которых отмечены места установки ПРТО (использовались данные Роспотребнадзора по Красноярскому краю и ФГУЗ "Центр гигиены и эпидемиологии в Красноярском крае"). Вид электронной карты приведен на рис. 1. на примере 2005 г.
Рис. 1. Карта г. Красноярска с нанесенными на ней источниками ЭМИ РЧ за 2005 г.
Наибольшее скопление источников ЭМИ РЧ как за 2003 г., так и за 2005 г. наблюдается в Октябрьском, Железнодорожном и Центральном районах, наименьшее – в Ленинском районе.
3.2 Определение удельной мощности ПРТО г. Красноярска
Представлялось важным провести расчет удельной мощности ЭМИ ПРТО (мощности ЭМИ ПРТО на единицу площади) в каждом районе города (рис. 2.), который позволил выделить приоритетные районы.
Рис. 2. Карта районов г. Красноярска. 1 – Октябрьский, 2 – Железнодорожный, 3 – Центральный, 4 – Советский, 5 – Свердловский, 6 – Кировский, 7 - Ленинский
Данные для расчета удельной мощности ЭМИ ПРТО (мощности ПРТО на единицу площади) в каждом районе города за последние несколько лет представлены в табл. 1.
Таблица 1. Величина удельной мощности ЭМИ ПРТО, рассчитанная для районов г. Красноярска
№ | Название района | Площадь км2 | Мощность от источников ЭМИ РЧ, Вт | Удельная мощность, Вт/ км2 | ||||
2003 | 2004 | 2005 | 2003 | 2004 | 2005 | |||
1. | Октябрьский | 33.29 | 439885.81 | 483874.39 | 571851.55 | 13213.75 | 14535.13 | 17177.88 |
2. | Железнодорожный | 11 | 3325.31 | 3657.84 | 4322.903 | 302.3 | 332.531 | 392.9912 |
3. | Центральный | 13.41 | 7622.01 | 8384.211 | 9908.613 | 568.38 | 625.2208 | 738.8973 |
4. | Советский | 56.42 | 5698.28 | 6268.108 | 7407.764 | 100.99 | 111.0973 | 131.2968 |
5. | Свердловский | 51.53 | 4917.09 | 5408.799 | 6392.217 | 95.42 | 104.9641 | 124.0485 |
6. | Кировский | 9.81 | 1085.26 | 1193.786 | 1410.838 | 110.63 | 121.6907 | 143.8163 |
7. | Ленинский | 38.32 | 2161.52 | 2377.672 | 2809.976 | 56.41 | 62.04781 | 73.32923 |
Из таблицы следует, что наибольшая удельная мощность установлена в Октябрьском районе города, где расположен наиболее мощный ПРТО – антенное поле Красноярского краевого телерадиопередающего центра по ул. Попова, на втором месте - Центральный район. Наименьшая удельная мощность наблюдается в Свердловском районе. При изучении интенсивности ЭМИ были рассчитаны значения поля от каждого ПРТО с помощью "Программного комплекса анализа электромагнитной обстановки". Результат одного из расчетов представлен на рис. 3.