Смекни!
smekni.com

Возобновляемые источники энергии. Энергия солнца. Возможности использования в России и на Урале (стр. 2 из 3)

С учетом перспективы разработок, ведущихся в этом направлении, можно смело прогнозировать, что к 2015 году появятся новые гелиосистемы, с большей эффективностью и сроком окупаемости до 1 года. Стоимость установок сегодня уже на порядок ниже, чем была 10 лет назад.

Можно ли использовать энергию солнца в энергоснабжении жилых зданий, расположенных в средней полосе России?

Долгое время в нашей стране считалось, что солнечные установки целесообразны только в регионах с жарким климатом. Однако опыт использования их в таких местностях, как Аляска, Канада, Норвегия, Северная Америка, близких по климатическим условиям, показывает, что их можно применять и в нашей средней полосе, в частности в Московской области. Московская область размещена на Восточно-Европейской равнине в зоне перехода от Смоленско-Московской возвышенности до Мещерской низменности. Переходное положение между разными природными районами создает в области значительные перепады высот на местности. Природно-климатических условий достаточно для круглогодичной эксплуатации энергии солнца.

Различные строительные приемы использования возобновляемых источников энергии как в реконструируемых зданиях, так и при новом строительстве дают такую возможность. Надо только правильно их использовать.

В 60-70-х гг. в нашей стране предпринимались шаги по использованию нетрадиционных видов энергии. В это время появились также фотоэлектрические установки автономного электроснабжения, прекрасно зарекомендовавшие себя в космосе. К концу 80-х годов в эксплуатации находились солнечные установки горячего водоснабжения с общей площадью около 150 тыс. м², а производство солнечных коллекторов доходило до 80 тыс. м² в год. Экономические осложнения, возникшие в 90-е годы, затормозили развитие использования нетрадиционных видов энергии в нашей стране. Однако сегодня и в нашей стране НВИЭ получают все большее распространение.

Солнечная энергия используется в основном для производства низкопотенциального тепла, коммунально-бытового горячего водоснабжения и теплоснабжения. Общемировое производство низкопотенциального тепла в ближайшей перспективе составит 5*106 Гкал. Мировая суммарная мощность фотоэлектрических установок достигла 500 МВт.

Создание законодательной базы использования НВИЭ в России стимулирует дальнейшее развитие. Законом «Об энергосбережении» 1996 г. установлена правовая основа применения электрогенерирующих гелиоустановок. Государственной Думой и Советом Федерации принят закон «О государственной политике в сфере использования нетрадиционных возобновляемых источников энергии». Ведется разработка федеральной программы по использованию НВИЭ. В России на сегодня есть все предпосылки для его дальнейшего развития. С выходом из кризисного экономического состояния станет возможным развитие промышленности, научно-технической базы и др. деятельности. Как и во всем мире, рост использования этих источников необратим.

Экологическая ситуация требует от архитекторов и строителей нового мышления. Современная энергетика, ставшая сегодня традиционной, в зависимости от вида энергоносителя в целом, оказывает отрицательное воздействие на экологию окружающей среды. Хотя бы в области энергоснабжения зданий и городов необходимо принимать решения, позволяющие эффективно использовать возобновляемые ресурсы.

Анализ публикаций, в частности материалов Internet, показывает, что энергетические потребности в энергии во всем мире стимулируют разработку приемов по использованию возобновляемых источников энергии четвертого поколения. Такие приемы при меньших затратах на монтаж и оборудование позволяют эффективно эксплуатировать солнечные установки для энергообеспечения зданий.

Среди разработок можно выделить два главных направления, которые следует учитывать:

разработка и применение солнечных энергоустановок с ограниченным уровнем мощности для энергоснабжения мелких автономных потребителей;

создание солнечных энергетических станций ограниченной мощности в северных районах (типа Аляски). Это может радикально решить проблему использования возобновляемой энергии в масштабах, ощутимых в мировом энергобалансе.

Как может осуществляться альтернативное использование солнечной энергии при эксплуатации зданий? Рассмотрим несколько основных положений:

солнечная энергия — воздействие солнечной радиации на здание или воспринимающие поверхности. Для восприятия солнечной энергии необходима ориентация воспринимающих плоскостей на южную сторону, т.е. наиболее эффективно широтное расположение жилых домов;

пассивное использование солнечной радиации возможно за счет восприятия и отдачи энергии при прямом улавливании лучей через остекленные проемы (окна, витражи, витрины) и косвенном, за счет массивов стен, крыш, ограждений зимних садов и т.п.;

активное использование солнечной радиации возможно за счет восприятия и передачи энергии специальными устройствами — гелиоколлекторами, солнечными фотоэлектрическими установками наземного использования и т.п.;

возможно устройство энергоактивных пристроек к реконструируемому зданию, конструкции и формы которых предназначены для создания оптимального восприятия солнечной энергии;

устройство интегрированных систем, использующих энергию солнца в различном временном сочетании, позволяет с большей эффективностью использовать альтернативную энергию в организации жилой среды;

архитектурное и конструктивное решение гелиоэнергоактивного (своими формами и конструкциями способного воспринимать солнечную энергию) здания зависит от технологии использования гелиосистем. Пластика решения фасадов определяет максимальную эффективность улавливания солнечных лучей;

энергоактивные здания с интеграцией систем, воспринимающих энергию солнца, позволяют значительно повысить эффективность гелиосистем для климатических условий средней полосы России.

Каковы же основные принципы, которых следует придерживаться при проектировании или реконструкции здания с возможностью использования строительных приемов альтернативного энергоснабжения?

Прежде всего, необходимо учитывать климат региона и метеоусловия конкретной местности строительства, условия освещенности солнечными лучами гелиополя. Проект обязательно должен учитывать условия энергосбережения, оптимального восприятия зданием солнечных лучей;

энерговоспринимающие части установок необходимо правильно ориентировать с учетом максимальной эффективности;

при проведении строительства и реконструкции жилых зданий с последующим использованием в них альтернативного энергообеспечения необходимо стремиться к созданию энергетически эффективного здания, теплопотери которого сведены к минимуму за счет оптимального объемно-планировочного решения и усиленной теплоизоляции. Предполагается экологический подход к созданию жилой среды;

рекомендуется интегрированное использование солнечных установок с подключением электрогенерирующих установок к электросети для сброса избыточной энергии и забора недостающей, т.е. предусматривать дублирующую систему;

развитие серийного производства, упрощение конструкции альтернативных систем может значительно снизить себестоимость энергии от альтернативных систем;

при проектировании солнечных систем для работы в климатических условиях средней полосы России необходимо стремиться к углу наклона гелиоколлектора 700 и возможности корректировки угла 2 раза в год в зависимости от летне-зимнего периода (400 — летом и 700 — зимой).

Ярким уральским примером стал дом, построенный в поселке Растущий Белоярского района. Специалисты УГТУ-УПИ, занимающиеся изучением природной энергии, создали его сами для себя. Из заброшенного коровника получился комфортабельный красивый дом общей площадью 2400 м2. 25% энергии для нужд дают ветряк мощностью 4 кВт и солнечные батареи.

В условиях Урала солнечную энергию целесообразно использовать там, где нет других источников питания, – говорит преподаватель кафедры электротехники Игорь Витальевич Кирпичников. – Пока это дорогое удовольствие. За 1 Вт нужно будет заплатить от $ 2 до 8, а за 1 кВт соответственно $ 8000. Здесь предстоят и другие траты: солнечную батарею необходимо будет оснастить аккумулятором, чтобы энергия именно накапливалась и была, так сказать в наличии, когда темно. К тому же, каждый электроприбор нужно обеспечить преобразователем напряжения, т.к. электроток из солнечных батарей получается постоянный. В общем, для Урала использование солнечных батарей скорее получается как дополнение к основному источнику энергии.

В санатории “Обуховский”, расположенном в Свердловской области, испытываются энергосберегающие технологии для последующего их внедрения. Для нагрева минеральной воды в питьевом бювете был установлен солнечный коллектор.

В состав солнечного коллектора входят: солнечные панели, бак-аккумулятор с теплообменником внутри, насосная группа, блок управления (микропроцессор), расширительный бак и система трубопроводов по двухтрубной схеме: антифриз (до -600°С) – минеральная вода.

Солнечная установка смонтирована с целью испытать подобные технологии в условиях Свердловской области, а также определить целесообразность их установки на Урале. Исследование проводилось по заказу министерства энергетики и ЖКХ ГБУ СО “Институт энергосбережения” и НПФ “Энтальпия”. Во время испытаний тепловая мощность солнечного коллектора достигала 7,32 кВт и снижалась при прохождении облаков до 2,43 кВт. По заключению экспертов, пилотный проект удался, но необходимо круглогодичное испытание. В случае удачного завершения эксперимента подобные установки появятся в ряде бюджетных предприятий области.