В почвах медь является слабомиграционным элементом, хотя содержание подвижной формы бывает достаточно высоким. Количество подвижной меди зависит от многих факторов: химического и минералогического состава материнской породы, рН почвенного раствора, содержания органического вещества и др. Наибольшее количество меди в почве связано с оксидами железа, марганца, гидроксидами железа и алюминия и, особенно, с монтмориллонитом вермикулитом. Гуминовые и фульвокислоты способны образовывать устойчивые комплексы с медью. При рН 7-8 растворимость меди наименьшая.
Среднее содержание меди в почвах мира 30 мг/кг. Вблизи индустриальных источников загрязнения в некоторых случаях может наблюдаться загрязнение почвы медью до 3500 мг/кг. Среднее содержание металла в почвах центральных и южных областей бывшего СССР составляет 4,5-10,0 мг/кг, юга Западной Сибири – 30,6 мг/кг, Сибири и Дальнего Востока – 27,8 мг/кг. ПДК меди в России – 55 мг/кг, ОДК для песчаных и супесчаных почв – 33 мг/кг, в ФРГ – 100 мг/кг.
Никель (Ni). Атомная масса 58,7. В континентальных отложениях он присутствует, главным образом, в виде сульфидов и арсенитов, ассоциируется также с карбонатами, фосфатами и силикатами. Кларк элемента в земной коре равен 58 мг/кг. Наибольшее количество металла накапливают ультраосновные (1400-2000 мг/кг) и основные (200-1000 мг/кг) породы, а осадочные и кислые содержат его в гораздо меньших концентрациях – 5-90 и 5-15 мг/кг, соответственно. Большое значение в накоплении никеля почвообразующими породами играет их гранулометрический состав. На примере почвообразующих пород Западной Сибири видно, что в более легких породах его содержание наименьшее, в тяжелых – наибольшее: в песках – 17, супесях и легких суглинки –22, средние суглинки – 36, тяжелые суглинки и глины –49.
Содержание никеля в почвах в значительной степени зависит от обеспеченности этим элементом почвообразующих пород. Наибольшие концентрации никеля, как правило, наблюдаются в глинистых и суглинистых почвах, в почвах, сформированных на основных и вулканических породах и богатых органическим веществом. Распределение Ni в почвенном профиле определяется содержанием органического вещества, аморфных оксидов и количеством глинистой фракции.
Содержание Ni в почвах мира колеблется в широких пределах – от 1 до 100 мг/кг, составляя в среднем 50 мг/кг. Концентрация никеля в почвах европейской части России составляет – 51-54 мг/кг, Западной Сибири – 37-41 мг/кг.
Уровень концентрации никеля в верхнем слое почв зависит также от степени их техногенного загрязнения. В районах с развитой металлообрабатывающей промышленностью в почвах встречается очень высокое накопление никеля: в Канаде его валовое содержание достигает 206-26000 мг/кг, а в Великобритании содержание подвижных форм доходит до 506-600 мг/кг. В почвах Великобритании, Голландии, ФРГ, обработанных осадками сточных вод никель накапливается до 84-101 мг/кг. В России (по данным обследования 40-60 % почв сельскохозяйственных угодий) этим элементом загрязнены 2,8 % почвенного покрова. Доля загрязненных Ni почв в ряду других ТМ (Pb, Cd, Zn, Cr, Co, As и др.), является фактически самой значительной и уступает только землям загрязненным медью (3,8%). По данным мониторинга земель Государственной станции агрохимической службы «Бурятская» за 1993-1997 гг. на территории Республики Бурятия зарегистрировано превышение ПДК никеля на 1,4 % земель от обследованной территории сельхозугодий, среди которых выделяются почвы Закаменского (загрязнены 20% земель - 46 тыс.га) и Хоринского районов (загрязнены 11% земель – 8 тыс.га).
Содержание никеля в почвах России ограничивается следующими нормативами: ПДК никеля в почвах – 85 мг/кг; ОДК для песчаных и супесчаных почв – 20; ОДК обменной формы – 4,0 мг/кг. В Германии безопасным содержанием валового никеля в почвах считается 80-200 мг/кг.
Хром (Cr). Атомная масса 52. В природных соединениях хром обладает валентностью +3 и +6. Большая часть Cr3+ присутствует в хромите FeCr2O4 или других минералах шпинелевого ряда, где он замещает Fe и Al, к которым очень близок по своим геохимическим свойствам и ионному радиусу.
Кларк хрома в земной коре – 83 мг/кг. Наибольшие его концентрации среди магматических горных пород характерны для ультраосновных и основных (1600-3400 и 170-200 мг/кг соответственно), меньшие – для средних пород (15-50 мг/кг) и наименьшие – для кислых (4-25 мг/кг). Среди осадочных пород максимальное содержание элемента обнаружено в глинистых осадках и сланцах (60-120 мг/кг), минимальное – в песчаниках и известняках (5-40 мг/кг). Содержание металла в почвообразующих породах разных регионов весьма разнообразно. В европейской части бывшего СССР его содержание в таких наиболее распространенных почвообразующих породах, как лессы, лессовидные карбонатные и покровные суглинки, составляет в среднем 75-95 мг/кг. Почвообразующие породы Западной Сибири содержат в среднем 58 мг/кг Cr, причем его количество тесно связано с гранулометрическим составом пород: песчаные и супесчаные породы - 16 мг/кг, а среднесуглинистые и глинистые – около 60 мг/кг.
В почвах большая часть хрома присутствует в виде Cr3+. В кислой среде ион Cr3+ инертен, при рН 5,5 почти полностью выпадает в осадок. Ион Cr6+ крайне не стабилен и легко мобилизуется как в кислых, так и щелочных почвах. Адсорбция хрома глинами зависит от рН среды: при увеличении рН адсорбция Cr6+ уменьшается, а Cr3+ увеличивается. Органическое вещество почвы стимулирует восстановление Cr6+ до Cr3+.
Природное содержание хрома в почвах зависит главным образом от его концентрации в почвообразующих породах, а распределение по почвенному профилю – от особенностей почвообразования, в частности от гранулометрического состава генетических горизонтов. Среднее содержание хрома в почвах – 70 мг/кг. Наибольшее содержание элемента отмечается в почвах, сформированных на богатых этим металлом основных и вулканических породах. Среднее содержание Cr в почвах США составляет 54 мг/кг, Китая – 150 мг/кг, Украины – 400 мг/кг. В России его высокие концентрации в почвах в естественных условиях обусловлены обогащенностью почвообразующих пород. Курские черноземы содержат 83 мг/кг хрома, дерново-подзолистые почвы Московской области – 100 мг/кг. В почвах Урала, сформированных на серпентинитах, металла содержится до 10000 мг/кг, Западной Сибири – 86 – 115 мг/кг.
Вклад антропогенных источников в поступление хрома весьма значителен. Металлический хром в основном используется для хромирования в качестве компонента легированных сталей. Загрязнение почв Cr отмечено за счет выбросов цементных заводов, отвалов железохромовых шлаков, нефтеперегонных заводов, предприятий черной и цветной металлургии, использования в сельском хозяйстве осадков промышленных сточных вод, особенно кожевенных предприятий, и минеральных удобрений. Наивысшие концентрации хрома в техногенно загрязненных почвах достигают 400 и более мг/кг, что особенно характерно крупным городам. В Бурятии по данным мониторинга земель, проведенным Государственной станцией агрохимической службы «Бурятская» за 1993-1997 гг., хромом загрязнены 22 тыс. га. Превышения ПДК в 1,6-1,8 раз отмечены в Джидинском (6,2 тыс. га), Закаменском (17,0 тыс. га) и Тункинском (14,0 тыс. га) районах. ПДК хрома в почвах в России еще не разработаны, а в Германии для почв сельскохозяйственных угодий она составляет 200-500, приусадебных участков – 100 мг/кг.
Одним из наиболее эффективно диагностирующих индикаторов загрязнения почв является ее биологическое состояние, которое можно оценить по жизнеспособности населяющих ее почвенных микроорганизмов.
Следует также учитывать, что микроорганизмы играют большую роль и в миграции ТМ в почве. В процессе жизнедеятельности они выступают в роли продуцентов, потребителей и транспортирующих агентов в почвенной экосистеме. Многие почвенные грибы проявляют способность к иммобилизации ТМ, закрепляя их в мицелии и временно, исключая из круговорота. Кроме того, грибы, выделяя органические кислоты, нейтрализуют действие этих элементов, образуя с ними компоненты, менее токсичные и доступные для растений, чем свободные ионы.
Под влиянием повышенных концентраций ТМ наблюдается резкое снижение активности ферментов: амилазы, дегидрогеназы, уреазы, инвертазы, каталазы, а также численности отдельных агрономически ценных групп микроорганизмов. ТМ ингибируют процессы минерализации и синтеза различных веществ в почвах, подавляют дыхание почвенных микроорганизмов, вызывают микробостатический эффект, могут выступать как мутагенный фактор. При избыточном содержании ТМ в почве снижается активность метаболических процессов, происходят морфологические трансформации в строении репродуктивных органов и другие изменения почвенной биоты. ТМ в значительной степени могут подавлять биохимическую активность и вызывать изменения общей численности почвенных микроорганизмов.
Загрязнение почв ТМ вызывает определенные изменения в видовом составе комплекса почвенных микроорганизмов. В качестве общей закономерности отмечается значительное сокращение видового богатства и разнообразия комплекса почвенных микромицетов при загрязнении. В микробном сообществе загрязненной почвы появляются необычные для нормальных условий, устойчивые к ТМ виды микромицетов. Толерантность микроорганизмов к загрязнению почвы зависит от их принадлежности к различным систематическим группам. Очень чувствительны к высоким концентрациям ТМ виды рода Bacillus, нитрифицирующие микроорганизмы, несколько более устойчивы – псевдомонады, стрептомицеты и многие виды целлюлозоразрушающих микроорганизмов, наиболее же устойчивы – грибы и актиномицеты.