Для двигателя внутреннего сгорания, чтобы получать необходимую механическую энергию для движения автомобиля, необходимо иметь высокое давление в цилиндрах. Естественно, чем выше температура сгорания топлива, тем выше давление. Но окиси азота образуются тем охотней, чем выше температура и больше кислорода (то есть воздуха), поступает в камеру сгорания. С точки зрения экологии в ДВС ситуация тупиковая. Много топлива и мало воздуха - низкая мощность, экономичность и много СО. Мало топлива и много воздуха - много окиси азота. Успешный до недавней поры компромисс достигался электронным регулированием соотношения топливо-воздух и применением, так называемого трехходового каталитического нейтрализатора. Тем не менее, уже разработаны камеры сгорания, способные сжигать сверхбедные топливовоздушные смеси. ДВС, имеющие такие камеры, на всех режимах работают практически при идеальных соотношениях топлива и воздуха, следовательно, содержат минимальное количество вредных веществ в отработавших газах. Кроме того, все больше появляется систем, обеспечивающих автоматическое управление подачей топлива в камеру сгорания и его воспламенением, что тоже благоприятно сказывается на экологической чистоте ДВС.
В частности, технические данные ДВС могут быть улучшены путем совершенствования электронного управления системами двигателей. Так, в последние годы появились в серийном производстве системы с управляемыми фазами газораспределения, и многие фирмы выпускают двигатели с достаточно эффективными механизмами их регулирования (Honda, Toyota, BMW и др.). Наибольшими функциональными возможностями воздействия на показатели двигателей обладает система с электромагнитным приводом клапанов и электронным управлением, а также, переходу на четырехклапанное газораспределение.
Так же предпринимались многочисленные попытки повышения экономичности ДВС с использованием процесса парообразования из воды.
Особенно активно двигатели с впрыском воды применялись всеми воюющими сторонами во время Второй Мировой войны, когда цены на нефть были чрезвычайно высокими. Но затем, такие двигатели вышли из употребления по причине своей технологической сложности и ненадёжности, тем более, об экологии тогда никто ещё серьёзно не заботился. Любой двигатель внутреннего сгорания не просто впустую выбрасывает большую часть получаемой им тепловой энергии (70 - 80 %), но, более того, он даже разрушается, если потеряет возможность, через систему охлаждения, отдавать воде своё тепло. Получающая это тепло вода, превращаясь во время кипения или испарения в пар, при обычном атмосферном давлении увеличивается в своём объёме в 1700 раз. Давление образовавшегося пара может помочь рабочему газу приводить в движение поршни или турбины тепловых двигателей и тем давать существенное приращение мощности, максимального крутящего момента и коэффициента полезного действия (КПД) этих моторов. Существует три основных варианта использования впрыска воды на ДВС:
1. От контакта воды с горячими выхлопными газами происходит процесс парообразования, после чего пар вращает небольшую турбину, которая помогает основному двигателю. О разработке подобной силовой установки для своих автомобилей в ноябре 2005 заявила компания BMW.
2. На многих спортивных автомобилях, использующих турбонаддув, вода распыляется в сжатом компрессором воздухе для охлаждения этого воздуха, вместе с которым она затем попадает цилиндры, где и становится паром. Здесь нужно заметить, что любой газ (это относится и к воздуху и к пару) при понижении своей температуры на один градус, при атмосферном давлении, уменьшается примерно на 1/270 своего объёма и, наоборот, при сжатии, особенно резком, температура газа возрастает. В этом легко убедиться, накачивая камеру колеса велосипеда ручным насосом, который при этом заметно нагревается. Чтобы в цилиндры двигателя с меньшими затратами энергии поместилось больше сжатого воздуха, этот воздух охлаждается распылением в нём (не подогретой) воды, которая имеет очень высокую теплоёмкость. Это распыление осуществляется либо до прохождения сжатого воздуха через интеркулер (дополнительный охлаждающий радиатор), либо после него, но, в любом случае, даже мельчайшие нагревающиеся капельки воды должны превращаться в пар только внутри цилиндра, иначе польза от этого пара становится ничтожной. Более того, нарушение стехиометрического (оптимального) соотношения количества топлива и воздуха, включающего в себя водяные пары, может привести к остановке двигателя.
3. Специально подогретая вода впрыскивается (распыляется) непосредственно в цилиндры инжекторного двигателя. От контакта с горящим топливом, раскалённым поршнем и цилиндром, вода вскипает, и расширяющийся пар помогает рабочим газам приводить поршни в движение. Здесь впрыск воды фактически заменяет собой турбонаддув. В этом случае уже не будет нарушаться стехиометрическое соотношение количества топлива и чрезвычайно сжатого компрессором воздуха, чьё очень высокое давление затрудняет процесс искрообразования. Расширяющийся в цилиндре пар для экологии значительно безопаснее, чем сжатый воздух, содержащий в себе до 80% азота, из которого, при высокой температуре (и давлении) образуются губительные для природы его химические соединения с избыточным кислородом. Кроме того, лишний кислород в сильно сжатом воздухе приводит к нежелательному обгоранию цилиндров, поршней, поршневых колец, клапанов и окислению электрических контактов свечей. Некоторые автомобилисты уверяют, что даже после многих лет эксплуатации ДВС с впрыском воды, внутренности его цилиндров выглядят как новые. Более эффективное непосредственное охлаждение (и смазывание) водой раскалённых и интенсивно трущихся поверхностей цилиндра продлевает жизнь всего мотора. Помимо прибавки мощности и экономии топлива на 15 – 20 %, существенно улучшается и охлаждение мотора, так как здесь цилиндры охлаждаются водой не столько снаружи, сколько изнутри. К сожалению, по причине очень сложной настройки, недостаточной её надёжности и сравнительной дороговизны, моторы с впрыском (инъекцией) воды распространение получили только в авиации, автоспорте и любительских авто- самоделках (в последнем случае не всегда оправдывают себя). Но достижения современной науки и техники, особенно электроники, позволяют надеяться на большую эффективность моторов с впрыском воды. Именно электроника должна регулировать точное дозирование инжектируемой в цилиндры воды, и её предварительный подогрев от внешних стенок цилиндра (в водяной рубашке) и от выхлопного патрубка с глушителем, каталитическим нейтрализатором и сажевым фильтром, чтобы в момент впрыска температура воды максимально приближалась к своей точке кипения, которая в сжатой газовой среде неизбежно повышается.
Предварительный подогрев воды необходим для улучшения процесса парообразования, - чем больше воды вскипит в цилиндрах работающих ДВС, тем больше экономится топлива и сохранится природа на нашей планете. При избыточном нагреве цилиндра микропроцессор может увеличить подачу в него воды, при этом, снизить подачу топлива ровно настолько, чтобы от этой замены при существующей нагрузке ощутимо не изменилась скорость вращения маховика двигателя, установленная водителем на данный момент. В идеале (при хорошей регулировке), мотору с впрыском воды уже не нужен громоздкий радиатор, ухудшающий аэродинамическое сопротивление быстро движущегося автомобиля, а также вентилятор, дополнительно обдувающий двигатель снаружи. В этом случае водяной насос, помимо своей надёжности должен, независимо от режима работы ДВС, быстро и точно изменять свою производительность и давление подаваемой им воды.
Ввиду прогрессирующего роста цен на нефть и неизбежного глобального энергетического и экологического кризиса, есть смысл чаще возвращаться к самым различным способам экономии топлива, пусть несколько подзабытым, но, с привлечением современных технологий, открывающих многообещающие перспективы.
Перспективы альтернативного топлива таковы, что уже сегодня мировые автопроизводители говорят о внедрении к 2010 году порядка 50 различных моделей, работающих на альтернативном виде горючего. В Европе, к примеру, особенно активны в этой области компании Mercedes-Benz, BMW, MAN. А к 2020 году, согласно резолюции ООН, нацелившей страны Европы на переход автомобилей на альтернативные виды моторного топлива, ожидается увеличение «альтернативщиков» до 23% всего автопарка, из них 10% (порядка 23,5 млн. единиц) – на природном газе.
Так что, судя по всему, Европу ожидают топливные перемены, над подготовкой к которым уже сегодня активно работают автомобильные разработчики. Но, как говорится, зачастую новое – это хорошо забытое старое. То, что сегодня кажется достаточно экзотичным и пока малоиспользуемым, как это ни покажется странным, таковым не считалось еще на заре автомобилестроения. Так, Генри Форд в свое время высказывал идею, что этанол станет горючим будущего, предлагая покупателям Ford T с двигателем, работающим на этаноле, бензине или их смеси. Сам же этанол производился из бобов сои, кукурузы или конопли. Рудольф Дизель, создав в 1890г. дизельный мотор, работающий на арахисовом масле, успешно реализовал идею биодизеля.
Биотопливо - использование биотоплива, например этанола (этилового спирта) или дизельного топлива (биодизеля), полученного из специально выращенных растений, обычно рассматривают как важный шаг к сокращению выбросов углекислого газа (СО2) в атмосферу. Конечно, при сжигании биотоплива углекислый газ попадает в атмосферу совершенно так же, как и при сжигании ископаемого топлива (нефти, угля, газа). Разница в том, что образование растительной массы, из которой было получено биотопливо, шло за счет фотосинтеза, то есть процесса, связанного с потреблением СО2. Соответственно, использование биотоплива рассматривается как «углерод-нейтральная технология»: сначала атмосферный углерод (в виде СО2) связывается растениями, а потом выделяется при сжигании веществ, полученных из этих растений. Однако стремительно расширяющееся производство биотоплива во многих местах (прежде всего в тропиках) ведет к уничтожению природных экосистем и утере биологического разнообразия.