Смекни!
smekni.com

Базові методики прогнозування стану довкілля (стр. 3 из 6)

Часто математики будують абстрактні моделі співтовариств (або экосистем), ґрунтуючись тільки на апріорних виставах (Свирежев, Логофет, 1978; Базыкин, 1985 і мн.ін.), і одержують із їхньою допомогою якісний прогноз. Прогнози, отримані за допомогою подібних моделей, слідом за В.І.Бєляєвим (1978), будемо називати апріорними, а отримані з використанням емпіричної інформації - апостеріорними.

Розрізняють прогнози позитивні й негативні (Бєляєв і ін., 1986). Останні формуються теорією потенційної ефективності складних систем (Флейшман, 1982) і дають вистава про те, яких станів экосистема не може мати в принципі при заданих обмеженнях. Позитивні прогнози, навпаки, несуть інформацію тільки про можливі стани досліджуваної системи.

Крім того, виділяють прогнози крапкові й розподілені (Іваненко, 1982), пошукові й нормативні (Прогностика. Термінологія.., 1978; Битий шляхів, 1983). Якщо в процесі прогнозування досліджувана экосистема вважається однорідної, то говорять про крапкові прогнози; а якщо ні, то, прогнози називаються розподіленими. Пошукові прогнози відповідають на запитання: що найімовірніше відбудеться з екосистемою при збереженні існуючих тенденцій? На противагу пошуковим, нормативні прогнози служать для відповіді на запитання: якими шляхами можна досягтися бажаного стану? Нормативне прогнозування широке використовується в цей час при дослідженні біосфери (Крапивин і ін., 1982; Моисеев і ін., 1985).

Аналіз великої літератури дозволяє зробити висновок про те, що екологія на сучасному етапі свого розвитку являє собою мультипарагматичну (Кун, 1977) науку із чотирьма симбіотичними парадигмами (Брусиловский, 1985). Їх можна назвати вербальною, функціональною, ескізною й імітаційною (три останні відповідають класифікації методів моделювання й прогнозування; див. Бєляєв і ін., 1979; Флейшман і ін., 1982; Розенберг, 1983; 1984). При прогнозуванні стану экосистем кожна із цих парадигм породжує ціла безліч різноманітних моделей (предикторів), що різняться по призначенню, використовуваній інформації, технології конструювання й т.п.

Предиктори, породжені тією або іншою парадигмою екологічного прогнозування, будемо називати по імені цієї парадигми. Аналогічно, ім'я парадигми іноді будемо привласнювати й прогнозам, побудованим за допомогою відповідного предиктора.

Так, вербальні прогнози формуються за допомогою вербального предиктора (породженого вербальною парадигмою). У тому ж змісті ім'я парадигми будемо вживати іноді й перед терміном "прогнозування". Наприклад, можна говорити про імітаційний прогноз, імітаційний предиктора, імітаційне прогнозування.

Вербальна парадигма. Першою історично сложившейся парадигмою екологічного прогнозування є вербальна парадигма. До початку періоду інтенсивної математизації екології вона була пануючою парадигмою, а сама екологія - монопарадигматичною наукою. У цей час ситуація суттєво змінилася, парадигм стало чотири, однак вербальна - єдина з них, яка не опирається на математичне моделювання. Вербальні прогнози можуть бути досить розмитими.

Вербальні предиктори, як правило:

· засновані на виставах про причинно-наслідкові зв'язки;

· будуються професійними екологами, що добре знають об'єкт прогнозування;

· формулюються природньою мовою;

· виробляють прогнози в шкалах найменувань або порядку.

Основну передумову вербальної парадигми можна сформулювати так: успіх прогнозування полягає в розкритті причинно-наслідкових зв'язків засобами класичної екології без використання можливостей математичного моделювання.

До вербальної парадигми ставляться роботи із прогнозування: чисельності тварин (Максімов 1984), стану лісу (Кулагинкулаги, 1980а,б; 1985), динаміки планктонних популяцій (Ащепкова, Кожова,1985) і т.п. Предиктори цієї парадигми використовувалися й продовжують використовуватися як при пошуковому, так і при нормативнім прогнозуванні.

Надійність вербальних предикторів при тих самих характеристиках прогнозу суттєво залежить від об'єктів прогнозування. Прикладом невдалих прогнозів на основі вербальної парадигми служать пророкування продуктивності основних груп гідробіонтів у водоймищах колишнього СРСР (Ніколаев, 1980; Федоров, 1983; Кожова, 1984) - фактичні значення продуктивності відрізняються від передвіщених у середньому в 5-10 разів. При цьому, як ми вже відзначали, катастрофічних цвітінь води взагалі на загал не передбачалося.

Короткострокові агрегіровані за структурою вербальні прогнози чисельності добре вивчених, щодо стабільних і більш-менш автономних популяцій організмів можуть виявитися досить надійними. Детальність формулювання середньострокових і довгострокових вербальних прогнозів для забезпечення прийнятної надійності повинна бути дуже низькою.

Функціональна парадигма. Існування функціональної парадигми екологічного прогнозування пов'язане з функціональним підходом, широкораспространенным у сучасній науці. В екології функціональний підхід почав застосовуватися досить давно .Однак становлення функціональної парадигми екологічного прогнозування відбулося після появи методів групового обліку аргументів - МГУА (ИвахненкоИваненко,Иваненко, 1982 і ін.).

Методологічною основою функціональної парадигми є теза про те, що практично вся інформація про досліджувану екосистему укладена в експертних даних і дослідникові залишається тільки вміло її витягти. Інакше кажучи, основна передумова функціональної парадигми полягає в наступному: усі відомості про причини розвитку екологічного процесу втримуються в його реалізації. Таким чином, передумови вербальної й функціональної парадигм почасти протилежні.

В принципі, успішне прогнозування без розуміння, що відбувається, без розкриття причинно-наслідкових зв'язків у цей час уважається цілком можливим (Редкозубов, 1981; Ивахненко, 1982; Кожова, Павлов, 1982; Рєзников, 1982; Битий шляхів, 1983; Розенберг, 1984), і тому функціональні предиктори мають право на існування.

При функціональнім прогнозуванні механізм функціонування екосистеми в моделях явно не відображається. Функціональні предиктори, як правило:

· застосовуються при пошуковім прогнозуванні;

· будуються за допомогою ЕОМ і являють собою моделі "чорного ящика";

· формуються мовою того ж рівня, на якім отримані експериментальні дані;

· не мають пояснювальну силою і якої б то не було спільністю;

· алгоритми ж синтезу функціональних предикторів, навпаки, досить універсальні;

· найдоступніші й найдешевші .

Апарат функціональної парадигми різноманітний. Це регресійний, кореляційний і факторний аналізи, теорія планування експерименту, еволюційне моделювання, аналіз тимчасових рядів, кластерный аналіз і т.п. Особливе місце в цьому апарату займає МГУА. Підхід до моделювання, заснований на принципах самоорганізації, являє собою процес побудови предиктора оптимальної складності, що відбувається при незначній участі модельєра й не потребуючий більших масивів апостеріорної інформації (ИвахненкоИваненко,Иваненко, 1982; Ивахненко, Степашко, 1985; Ивахненко, Юрачковский, 1987).

Функціональний предиктор самоорганізованого типу зара широко застосовуються для передбачення стану різних популяцій. У якості прикладів можна назвати наступні функціональні предиктори: чисельності нерестової популяції посольського омуля (Герцекович, Топорков, 1986), динаміки чисельності видів роду Melosira (Брусиловский, 1987), дендрохронологічних рядів (Розенберг, Феклистов, 1981; 1982), продуктивності природніх рослинних співтовариств (КононовКононов, Розенберг, 1981; Бармин, 1993) і агроценозов (Герцекович, Вусів, 1982), стану екосистеми оз.Байкал (ИвахненкоИваненко,Иваненко й ін., 1980; Ивахненко, 1982).

Ескізна парадигма. Ескізна парадигма екологічного прогнозування пропонує модельєрам будувати предиктори, у яких механізм функціонування эекосистеми в аспекті, що цікавить дослідника, відбитий лише на макрорівні. При цьому, як правило:

· модельєр, замовник і користувач - те саме "особа";

· у моделі враховують невелике число змінних і параметрів, що характеризують экосистему;

· імітується явище однієї біофізичної природи;

· коефіцієнти моделі мають екологічний (біофізичний) зміст;

· для аналізу моделі не потрібне застосування ЕОМ;

· експериментальні дані явно при побудові моделі не використовуються (у цьому змісті ескізні предиктори є апріорними);

· у предикторові знаходять висвітлення тільки деякі істотні (з погляду модельєра) елементи структури экосистемы;

· ескізні прогнози носять якісний характер і мають досить високу спільність.

Методи побудови ескізних предикторів також достатньо різноманітні. Але найбільше широко застосовуються апарати диференціальних і інших рівнянь, теорії ймовірностей.

Прикладом прогнозних досліджень, виконаних у рамках ескізної парадигми, можуть служити класичні дослідження В.ВольтерраВольтера й А.Лотки й роботи із прогнозування спалахів чисельності лісових комах (Ісаєв і ін., 1984; Недорезов, 1986).

Ескізні прогнози можуть бути як короткостроковими, так і довгостроковими; як пошуковими, так і нормативними. Однак детальність їх формулювання, як правило, не висока. Методика оцінки надійності ескізних прогнозів повинна враховувати насамперед якісні аспекти збігу передвіщених і фактичних станів досліджуваної екосистеми.

Приклади вдалих екологічних функціональних прогнозів досить численні. Однак у силу специфіки екологічного прогнозування й функціональної парадигми її застосованість при розробці будь-яких нормативних, а також довгострокових екологічних прогнозів досить обмежена. Найбільше доцільно функціональні предиктори використовувати в коротко- і середньостроковім пошуковім прогнозуванні. Надійність таких прогнозів може бути досить висока. При цьому наявна апостеріорна інформація накладає принципові обмеження на детальність формулювання функціональних прогнозів.