Смекни!
smekni.com

Проблемы охраны водной среды в горном деле (стр. 10 из 13)

Органические коагулянты образуют «мосты» между соседними частицами и вызывают их осаждение.

Процесс аэрации заключается в пропускании через слой активированного осадка воздуха, чрезвычайно ускоряющего химические реакции благодаря постоянному и интенсивному перемешиванию осадка и сточных вод. При этом избыток кислорода создает благоприятные условия для протекания биохимических процессов.

Диффузор с электрическим приводом, вращаясь с частотой

, засасывает жидкость из вертикальной трубы и с силой выбрасывает ее в резервуар. Тщательное перемешивание обеспечивает быстрое протекание биологических процессов.

При другом методе воздух под давлением нагнетается в жидкость. Когда давление в системе падает, растворенный воздух начинает выделяться в виде пузырьков, способствуя образованию слоя всплывшего на поверхности воды осадка. С помощью системы аэрации БПК снижается на

в течение 24 ч.

Присутствие в сточных водах соединений фосфора способствует росту бактерий, что приводит к помутнению воды. Как правило, сточные воды содержат

фосфора в пересчете на одного человека в сутки. При обычной обработке эти примеси не удаляются. И хотя содержание фосфора мало, реальная БПК оказывается очень высокой: каждый миллиграмм фосфора эквивалентен 160 мг ХПК.

Один из методов удаления фосфатов состоит в их коагуляции

. Так, добавление 200 мл
позволяет удалить
фосфатов, а 300 мл - более
фосфатов. При этом протекает следующая реакция:

При добавлении

:

Выпадающий фосфат кальция удаляют фильтрованием.

В сточных водах часто содержится довольно много связанного азота, который, как и фосфаты, соединения азота ускоряет рост водорослей. Аммиак удаляется из сточных вод аэрацией в башнях, заполненных кольцами Рашига, при этом удается извлечь до

. Для очистки от нитратов применяют коагуляцию соединениями железа и известью с последующей фильтрацией выделяющихся осадков, либо адсобрцию ионообменными смолами. Для этой цели широко
используется смола амберлит ИРА410, хотя емкость ее невелика: на 1 часть нитратов расходуется
частей смолы.

5.4 Очистка шахтных вод угольных месторождений

Происхождение шахтных вод.Из угольных шахт ежегодно откачивается более

шахтных вод. Существует несколько гипотез о происхождении этих вод. В настоящее время общепризнанно, что появление подземных вод на глубине горных выработок обусловлено атмосферными осадками и поверхностными водами. Горные породы насыщаются водой и образуют напорные и безнапорные горизонты.

Подземные воды подразделяются натрещинно-пластовые, порово-пластовые, трещинные и карстовые.

Гидрогеологические условия различных шахтных полей характеризуются многообразием сочетаний различных типов вод, что усложняет разработку месторождения и требует различных видов очистки сточных вод. Состав подземных вод определяется глубиной залегания и в зависимости от нее характеризуется зональностью, сложившейся в ходе геологической истории.

Состав и свойства шахтной воды.Химический состав минеральных и органических веществ шахтных вод условно можно разделить на следующие пять групп: главные ионы, которые содержатся в наибольшем количестве (хлористые, сульфатные, гидрокарбонатные, карбонатные, натрия, калия, магния и кальция); растворенные газы (кислород, азот, диоксид углерода, сероводород и другие); биогенные элементы (соединения азота, фосфора, кремния); микроэлементы — соединения всех остальных химических элементов; органические вещества.

В зависимости от глубины залегания подземные воды разделяют натри зоны. В верхней зоне, характеризующейся активным водообменом, обычно распространены пресные гидрокарбонатные воды, образующиеся в процессе инфильтрации грунтовых вод. Минеральный состав этой зоны, простирающейся до 300 м в глубину, определяется климатическими условиями, составом горных пород и рельефом местности. С увеличением глубины гидрокарбонатные воды переходят в гидрокарбонатно-сульфатные и сульфатно-гидрокарбонатные. В засушливых районах минерализация фунтовых вод повышается. Шахтная вода содержит минеральные, органические и бактериальные загрязнения. К минеральным относятся частицы песка и глины, минеральные включения углей (кварц, пирит, карбонаты и др.), а также растворенные соли, щелочи, частицы угля, минеральные смазочные масла, продукты жизнедеятельности и др. К бактериальным загрязнениям относятся различные микроорганизмы, преимущественно плесневые грибы, микробы кишечной группы и др.

Содержание растворенных солей в шахтных водах изменяется в значительных пределах (

и более). В зависимости от солесодержания воды классифицируют на пресные - до
; слабосолоноватые -
; солоноватые -
; сильносолоноватые -
; соленые –
; сильносоленые -
; рассолы — свыше
.

По фазово-дисперсному состоянию загрязнения шахтных вод угольных месторождений можно подразделить на взвешенные вещества (

), коллоидные частицы (
), молекулярные (
) и ионные (
) растворы. Содержание взвешенных веществ в шахтной воде зависит от горно-геологических и технологических условий выработки и изменяется в широких пределах - от 0,045 до
.

Химический состав вод прежде всего характеризуется минерализацией воды, под которой понимают выраженную в мг/л или г/кг (в случаях более одного грамма на килограмм) сумму всех минерализованных веществ, определенных при анализе. Минерализация шахтных вод изменяется в очень широких пределах как по содержанию солей, так и по их количественному составу (последнее даже в пределах одной шахты). Однако каждому угольному бассейну присуща своя минерализация шахтной воды. В Подмосковном, Кузнецком и Печорском угольных бассейнах встречаются в основном пресные воды, а шахтные воды Ростовской области относятся чаще к сульфатному классу натриевой группы II типа, реже - к гидрокарбонатному и хлоридному классу магниевой, натриевой, кальциевой групп. В микроэлементном составе шахтных вод обнаружено наличие железа, меди, титана, никеля, мышьяка, бериллия, цинка, кадмия, стронция, кобальта, ванадия, хрома, галлия, олова, свинца, молибдена, серебра, сурьмы, бария, теллура, висмута, марганца и др. В большинстве случаев их содержание не превышает предельно допустимых концентраций (ПДК). Однако в некоторых водах содержание микроэлементов выше допустимого, что следует учитывать при осуществлении комплексной переработки этих вод. Так, в шахтных водах Кузбасса

в концентрациях выше допустимых содержатся стронций, кадмий, марганец, барий, медь, кобальт, хром, свинец и сурьма.

Шахтные воды Печорского, Подмосковного и Кузнецкого бассейнов имеют умеренную жесткость -

. Повышенную (
) жесткость имеют шахтные воды Восточного Донбасса. Встречаются шахтные воды и с более высокой жесткостью.

Кислые шахтные воды, образуемые в результате окисления сульфидов железа под действием кислорода воздуха и воды встречаются в Кизеловском бассейне, а также на некоторых шахтах Подмосковного бассейна. Эти воды имеют повышенное содержание железа, изменяющееся от 90 до 713 мг/л и придающее воде бурую окраску.

Размер загрязнений шахтных вод органическими веществами определяют перманганатной или бихроматной окисляемостью (ХПК), а также биохимической потребностью в кислороде (БПК). Окисляемость выражается количеством кислорода в миллиграммах, затрачиваемого на окисление органических веществ в 1 л воды в стандартных условиях. В зависимости от содержания органических веществ окисляемость воды колеблется в широких пределах. Так, воды шахт Печорского и Челябинского бассейнов отличаются повышенной окисляемостью, составляющей

. При наличии в шахтных водах трудноокисляемых органических загрязнений для определения химического потребления кислорода (ХПК) применяют в качестве окислителя бихромат калия.