Смекни!
smekni.com

Нульовий дім. Використання енергії припливів (стр. 3 из 3)

- "пірнало" Солтера;

- пліт Кокерела;

- випрямлювач Расела;

- коливальна водяна колонка (резервуар).

"Пірнало" Солтера нагадує поплавок, який, піднімаючись і опускаючись одночасно з хвилями, приводить в дію насос, що подає воду під тиском в турбогенератор.

Пліт Кокерела складається з трьох шарнірне з'єднаних понтонів, які перебувають на плаву і відтворюють колихання хвиль, їхнє підняття й опускання приводить в дію гідравлічні тарани, які з'єднують понтони. Стискання і розтягування таранів передається робочій рідині, яка діє на гідравлічний генератор, що виробляє електричний струм.

Випрямлювач Расела регулює рух води таким чином, що вона надходить у турбіну тільки в одному напрямку.

Коливальна водяна колонка (резервуар) відрізняється від попередніх проектів. Вона перетворює енергію хвиль на потенціальну енергію стиснутого повітря, яке потім віддає енергію повітряній турбіні.

Ідея колонки належить японському морському офіцеру Масуді, який винайшов плаваючий хвилеріз. Він довів, що коли хвилеріз зробите у вигляді перевернутої камери з отворами у верхній частині, то висота хвиль усередині буде значно меншою, ніж ззовні, оскільки хвиля вирівнюватиметься під дією потоків повітря, що проходять крізь отвори. Інтенсивні повітряні потоки постійно надходять у середину камери і виходять з неї внаслідок піднімання та опускання колони.

За цим принципом сьогодні працюють плавучі установки, які використовуються для буїв різного призначення. Схему такої установки показано на рис. 13.

В її камері 1, яка має дискову опору 2, міститься турбіна 3. з'єднана з електрогенератором 4. Коли проходить хвиля камера намагається піднятися разом із нею. Опора перешкоджає цьому й таким чином забезпечує інтенсивне проникнення води всередину камери. Стовп води витісняє повітря із середини камери крізь сопловий апарат на лопаті турбіни. Після проходження хвилі вода виходить з камери, а її місце знову займає повітря. Потім цикл повторюється.

На рис. 15 показана схема побудованої в Японії прибійної електростанції потужністю 50кВт. Принцип її роботи приваблює своєю простотою і майже повною відсутністю рухомих частин. Хвиля, яка падає під козирок 1, стискає повітря й жене його крізь сопловий канал 2 до турбіни 3. яка приводить в дію електрогенератор 4.

В Японії створено подібну прибійну електростанцію потужністю 50 кВт. Собівартість виробленої нею електроенергії становить 20-30 ен/кВт·год, що відповідає собівартості електроенергії, яка виробляється дизель-електричними станціями.

Основними причинами, які стримують розвиток хвилевих енергоустановок, є розосередження енергії на великій поверхні, непостійне хвилевідтворення, низька швидкість руху хвиль при значних силах їхньої дії.

Таким чином, коли проектуються хвилеві енергоустановки, слід насамперед вирішувати питання концентрації та акумулювання енергії, а також ефективного її перетворювання з максимальним використанням наявних технічних рішень.

Основними шляхами розвитку хвилевих енергоустановок є підвищення концентрації енергії хвиль і енергоємності акумуляторів, їхньої надійності та ефективності перетворювання енергії.

Усім цим умовам відповідає багатоступінчастий хвилевий насос, схему якого наведено на рис. 16. Одна його ступінь вміщує гофрований патрубок 1, вихідний клапан 2, демпфугачий резервуар 3, вихідний клапан 4 і тонкий гнучкий лист 5, який вертикально входи у воду. За допомогою хвилевого насоса здійснюється перетворення кінетичної та потенціальної енергії на направлений рух рідини. Подальше перетворення кінетичної енергії рідини, що рухається, на електроенергію відбувається за допомогою гідравлічних турбін, які обертають електрогенератор.

У Данії, Норвегії та Швеції станції розташовано на плотах, з'єднаних з насосом, який починає працювати, коли хвилі діють на пліт. Тут використано великий насос, що міститься на дні моря. Поршень насоса з'єднується з плотом за допомогою еластичного дроту. Коли хвилі підіймають пліт, поршень піднімається, вода проходить крізь заповнений блок генератора турбіни, виробляючи електроенергію. Коли хвиля спадає, поршень опускається, витискаючи своєю вагою воду через клапани.

Припливні електростанції (ПЕС)

Віками люди роздумували над причиною морських припливів і відпливів. Сьогодні ми достовірно знаємо, що могутнє природне явище — ритмічний рух морських вод викликають сили тяжіння Місяця і Сонця. Енергія припливів величезна, її сумарна потужність на Землі становить близько 1 млрд. кВт, що більше за сумарну потужність усіх річок світу.

Принцип дії припливних електростанцій дуже простий. Під час припливу вода, обертаючи ротор гідротурбіни, заповнює водоймище, а після відпливу вона з водоймища виходить в океан, знову обертаючи ротор турбіни. Головне — знайти зручне місце для встановлення греблі, в якому висота припливу була б значною. Будівництво й експлуатація електростанцій на морі - складне завдання. Морська вода спричиняє корозію більшості металів, деталі установок обростають водоростями.

Енергія припливу використовує рух води, що викликається припливними течіями, або підйом та опускання рівня моря через припливи. Хоча цей спосіб ще не набув широкого використання, він має потенціал ґенерування електроенергії в майбутньому та є прогнозованішим, аніж енергія вітру та Сонця.

Технологія, яка потрібна для отримання енергії припливу, вже добре розвинута, однак, все ще залишається дорогою. У світі існує лише близько сорока припливних електростанцій.

Велика Британія побудувала декілька суто припливних електростанцій у світі на своєму західному узбережжі, а ще приблизно 30 місць було визначено для подібного будівництва по всій країні. Один з найсучасніших зразків такої установки, який зараз працює в рамках Технологічної програми Міністерства у справах бізнесу, підприємництва та сільського господарства, називається проект Морський потік та працює з червня 2003 оку на північ від берегів Девону.