Смекни!
smekni.com

Каталитические методы газоочистки (стр. 4 из 4)

Практически все эти физические воздействия реализуются в электрогидравлическом эффекте. Суть эффекта заключается в возникновении высокого давления в замкнутом объеме при воздействии на материалы короткоимпульсного (в течение 1—2 мс) высоковольтного (до 30 кВ) электрического импульса.

Нами исследовано влияние электрогидравлического эффекта (или как его называют в прикладном плане — электрогидравлического удара) на активность Сu,Ni/Аl2О3-катализатора (медь и никель наносили методом пропитки γ-А12О3 растворами ацетата меди и нитрата никеля). Электрогидравлическому удару подвергалась гетерогенная система, включающая водные растворы ацетата натрия и нитрата никеля и носитель γ-А12О3, на специальной установке.

Обработка системы осуществляют при варьировании межэлектродных промежутков от 1 до 30 мм при рабочем напряжении 25—30 кВ, эффективное время воздействия составляло 1—2 мс. Как было сказано выше, в процессе обработки раствор подвергался комплексному воздействию факторов, сопровождающих гидроудар (ультразвук, кавитационные и ударные волны, магнитное и электрическое воздействие).

Последующие испытания активности полиметаллического алюмоникельмедного катализатора показывают высокую активность его в процессе комплексной очистки газов. При объемной скорости газового потока 8000 ч-1 степень окисления СО и восстановления NOх достигает 100% уже при 150 °С. Увеличение скорости потока до 10000 ч-1 не приводит к снижению активности катализатора.

Таким образом, обработка алюмоникельмедного катализатора на стадии приготовления его в поле электрогидравлического удара повышает его активность в процессах комплексной очистки газов от оксидов азота и углерода. Воздействие электрогидродинамического удара приводит к снижению температуры, при которой достигается 100%-ная степень превращения СО и NOx, на 250 °С по сравнению с реакцией на нанесенных катализаторах, полученных традиционным методом.


3. Перспективы каталитической очистки газовых выбросов

Анализ экологической ситуации на данный момент показывает, что важнейшими проблемами на планете являются смог и выбросы, способствующие образованию кислотных дождей. Последние обусловлены содержанием в атмосфере SO2, NOx, CO и некоторых углеводородов, проявляющих высокую химическую активность. Глобальную экологическую проблему представляет собой парниковый эффект, являющийся причиной общего потепления на планете. Газы, обусловливающие парниковый эффект, такие, как СО2, СН4, NOx, хлор- и фторуглеводороды, стабильны; они диффундируют и накапливаются в атмосфере. В соответствии с моделью системы управления окружающей средой представленной в [1], важным экологическим аспектом является нормализация качества атмосферного воздуха. Согласно работам [2], уровень загрязнения окружающей среды внастоящее время в полной мере зависит от успехов исследований в области экологического катализа и уровня технологического воплощения имеющихся разработок. Одной из принципиальных задач является проведение систематических исследований в данной области с целью получения экологических катализаторов.

Приоритет в экологическом катализе в 90-х годах отдан получению и модификации полиметаллических композиций для удаления из промышленных и транспортных газовых выбросов NOx и летучих органических соединений. Следует отметить, что особое значение приобретает очистка дизельных выбросов. Создаваемые катализаторы должны обеспечивать не только удаление конкретных экологически вредных компонентов из газового потока, но и превращение их в экологически чистые соединения: О2, N2, водяной пар и СО2. В то же время необходимо, чтобы они были химически стабильными в реальных рабочих условиях (широкий интервал температур, объемных скоростей и концентраций), устойчивыми по отношению к каталитическим ядам и не представляли потенциальный опасности для окружающей среды (выброс мелкодисперсных частиц металлов или их токсичных производных).

Существует два каталитических способа удаления NOx из газовых выбросов: разложение на О2 и N2 и селективное восстановление. Большинство разработок каталитических систем для селективного восстановления оксидов азота базируется на использовании благородных металлов и оксидов неблагородных металлов. Однако при использовании уже известных катализаторов процесса восстановления возникает несколько проблем, решение которых заставляет разрабатывать новые эффективные и достаточно дешевые катализаторы.

Практический интерес для процессов технического и экологического катализа представляют соединения АВО3 со структурой перовскита СаТiO3.

Методы получения перовскитов были аналогичны описанным в работах.

Восстановление оксида азота(II) проводили на установке проточного типа при объемной скорости 2000ч-1. Объем катализатора составлял 1,5 см3. Исходная газовая смесь имела состав (об%):

NO - 0.16, NH3 – 11, О2 – 12.6, N2 – 75.24

Продукты реакции анализировали газохроматографическим методом. Процесс восстановления оксида азота (II) на перовскитах осуществлялся по реакции:

4NO + 4NH3 + O2 = 4N2 + 6H2O


Таблица 1

Конверсияα NOxнаперовскитахряда LnAlO3 (Ln – La, Pr, Nd, Sm)

Катализатор Значение α, % при температуре 4500 С
LaAlO3PrAlO3NdAlO3SmAlO3 37414552

Анализ данных, представленных в таблице 1 показал, что на каталитическую активность перовскитов значительное влияние оказывает варьирование металла из семейства лантаноидов. Из исследованных перовскитов ряда LnAlO3 (где Ln – La, Pr, Nd, Sm) наибольшей активностью обладал SmAlO3. Было установлено [6], что активным центром, который определяет каталитическую активность перовскита и его термостабильность, является не только ион переходного металла. Перовскиты - нестехиометрические соединения с различным содержанием кислорода, поэтому такими дополнительными центрами могут быть вакансии по кислороду, образующиеся в результате искажения идеальной кубической структуры типа СаТiO3. Например, в перовскитах с лантаноидами в позиции катиона А искажения уменьшаются от гадолиния до лантана в любом ряду с постоянным радиусом иона переходного металла [7].

Полученные результаты исследования делают актуальной возможность использования перовскитов в качестве катализаторов процесса селективного восстановления оксида азота.

Задача

При крашении одежды в цвет бордо в химически последовательно используют две ваннах с растворами красителя, состав которых в граммах следующий (из расчета на 16 кг одежды):


Краситель свежая ванна вторая ванна

Прямой бордо 500 430

Поваренная соль 1000 600

Кальцинированная сода 85 40

Сколько каждого компонента в совокупности по двум ваннам, требуется для крашения 100 кг одежды. Каковы процентные концентрации компонентов каждой ванны в отдельности по отношению к одежде.

Решение

Найдем содержание компонентов свежей ванны по отношению к одежде:

А) Краситель бордо

16000 г – 100 %

500 г – х

х = 3,125 %

б) Поваренная соль

16000 г – 100 %

1000 г – х

х = 6,250 %

в) Кальцинированная сода

16000 г – 100 %

85 г – х

х = 0,531 %

Рассчитаем также для второй ванны:

А) Краситель бордо

16000 г – 100 %

430 г – х

х = 2,687 %

б) Поваренная соль

16000 г – 100 %

600 г – х

х = 3,750 %

в) Кальцинированная сода

16000 г – 100 %

40 г – х

х = 0,250 %

2. Найдем сколько каждого компонента в совокупности по каждой ванне потребуется на 100 кг одежды:

А) Краситель бордо 3,125 + 2,687 = 5,812 %

100 г – 100 %

х г – 5,812 %

х = 5,812 кг

б) Поваренная соль 6,250 + 3,750 = 10 %

100 г – 100 %

х г – 10 %

х = 10 кг

в) Кальцинированная сода 0,531 + 0,250 = 0,781 %

100 г – 100 %

х г – 0,781 %

х = 0,78 кг

Ответ: для крашения 100 кг одежды необходимо красителя бордо - 5,812 кг, поваренной соли – 10 кг, кальцинированной соды – 0,76 кг.


Выводы

Каталитические методы очистки газов применяют часто для предварительной очистки технологических газов.

Каталитические методы газоочистки основаны на взаимодействии примесей с другими газообразными компонентами в присутствии катализатора преимущественно при 300-400 °С и высоких объемных скоростях газа (5*10-3-105 ч-1). Катализаторы - оксиды Fe, Cr, Cu, Zn, Со, Pt, Pd и др., которые наносят на носитель, имеющий развитую поверхность или на металлические материалы (проволоку, сетку, ленту из легиров. стали, Ti, анодиров. А1 и т.п.); активные боксит и уголь, цеолиты, гопкалит (марганцевомедный катализатор.) и др. Процесс газоочистки проводят, как правило, с неподвижным слоем катализатора. Для большинства катализаторов во избежание их забивки содержание инертных твердых примесей в газе не должно превышать 15 мг/м3.

К каталитическим методам газоочистки относятся окисление примесей с применением О2 и их восстановление так называемым газом-восстановителем (гидрирование при использовании Н2). Окисляют обычно: кислородсодержащие органические соединения до СО2 и Н2О, например спирты и эфиры.

Каталитическая очистка газов с применением газа-восстановителя предназначена для гидрирования сераорганических соединений в H2S в производстве H2S (кобальтмолибденовый кат. при 300-400 °С) с последующим улавливанием образовавшегося H2S оксидом Zn или после охлаждения газа растворами алканоламинов; восстановления метаном и конвертированным природным газом SO2 и паров S в H2S с его селективным извлечением в производстве серы (кобальтмолибденовый или никельмолибденовый катализатор при 300-450 °С); восстановления до N2 оксидов азота, например отходящих газов производства HNO3, с помощью СН4 или Н2 (при 800-900 °С), которые одновременно связывают О2, содержащийся в газе, в СО2 и Н2О, или селективного восстановления с использованием NH3 (при 200-270 °С) в присутствии катализаторов на основе Pt или Pd.


Список литературы

Глинка Н.Л. Общая химия. Изд. 17-е, испр. - Л.: "Химия", 1975. - 728 с.

Кузнецов В.В., Усть-Качкинцов В.Ф. Физическая и коллоидная химия. Учеб. пособие для вузов. - М.: Высш. школа, 1976. - 277 с.

Носков А.С, Пай З.П. Технологические методы защиты атмосферы от вредных выбросов на предприятиях энергетики. Новосибирск, СО РАН, ГПНТБ, 1996, 156 с.

Основы химической технологии: Учебник для студентов хим.-технол.спец. вузов / И.П. Мухленов, А.Е. Горштейн, Е.С. Тумаркина; Под ред. И.П. Мухленова. - 4-е изд., перераб. и доп. - М.: Высш. школа, 1991. - 463 с.

Попова Н.М. Катализаторы очистки газовых выбросов промышленных производств.- М.: Химия, 1991.

Успехи химии и технологии редкоземельных элементов. - М.: Металлургия, 1970.