Смекни!
smekni.com

Методы очистки пылегазовых выбросов (стр. 2 из 3)

Зернистые фильтры. Применяются для очистки газов реже, чем волокнистые фильтры. Различают насадочные и жесткие зернистые фильтры.

Полые газопромыватели. Наиболее распространены полые форсуночные скрубберы. Они представляют колонну круглого или прямоугольного сечения, в которой осуществляется контакт между газом и каплями жидкости. По направлению движения газа и жидкости полые скрубберы делят на противоточные, прямоточные и с поперечным подводом жидкости. (рис. 7)

Насадочные газопромыватели представляют собой колонны с насадкой навалом или регулярной. Их используют для улавливания хорошо смачиваемой пыли, но при невысокой концентрации.

Рис. 5 Вихревые пылеуловители: а – соплового типа: б – лопаточного типа; 1 – камера; 2– выходной патрубок; 3сопла; 4– лопаточный завихритель типа «розетка»; 5 – входной патрубок; 6– подпорная шайба; 7 – пылевой бункер; 8 – кольцевой лопаточный завихритель


Рис. 6 Рукавный фильтр: 1 – корпус; 2 –встряхивающее устройство; 3 – рукав; 4распределительная решетка

Газопромыватели с подвижной насадкой имеют большое распространение в пылеулавливании. В качестве насадки используют шары из полимерных материалов, стекла или пористой резины. Насадкой могут быть кольца, седла и т.д. Плотность шаров насадки не должна превышать плотности жидкости. (рис. 8)

Скрубберы с подвижной шаровой насадкой конической формы (КСШ). Для обеспечения стабильности работы в широком диапазоне скоростей газа, улучшения распределения жидкое и уменьшения уноса брызг предложены аппараты с подвижной шаровой насадкой конической формы. Разработано два типа аппаратов: форсуночный и эжекционный

В эжекционном скруббере орошение шаров осуществляет жидкостью, которая всасывается из сосуда с постоянным уровнем газами, подлежащими очистке.

Тарельчатые газопромыватели (барботажные, пенные). Наиболее распространены пенные аппараты с провальными тарелками или тарелками с переливом. Тарелки с переливом имеют отверстия диаметром 3–8 мм. Пыль улавливается пенным слоем, который образуется при взаимодействии газа и жидкости.

Эффективность процесса пылеулавливания зависит от величины межфазной поверхности.

Пенный аппарат со стабилизатором пенного слоя. На провальной решетке устанавливается стабилизатор, представляющий собой сотовую решетку из вертикально расположенных пластин, разделяющих сечение аппарата и пенный слой на небольшие ячейки. Благодаря стабилизатору происходит значительное накопление жидкости на тарелке, увеличение высоты пены по сравнению с провальной тарелкой без стабилизатора. Применение стабилизатора позволяет существенно сократить расход воды на орошение аппарата.

Газопромыватели ударно-инерционного действия. В этих аппаратах контакт газов с жидкостью осуществляется за счет удара газового потока о поверхность жидкости с последующим пропусканием газожидкостной взвеси через отверстия различной конфигурации или непосредственным отводом газожидкостной взвеси в сепаратор жидкой фазы. В результате такого взаимодействия образуются капли диаметром 300–400 мкм.

Рис. 7 Скрубберы: а – полый форсуночный: б – насадочный с поперечным орошением: 1 – корпус; 2– форсунки; 7 – корпус; 2– форсунка; 3–оросительное устройство; 4– опорная решетка; 5 – насадка; 6 – шламосборник


Рис. 8. Газопромыватели с подвижной насадкой: а – с цилиндрическим слоем: 1 – опорная решетка; 2– шаровая насадка; 3– ограничительная решетка; 4 – оросительное устройство; 5 – брызгоуловитель; б и в - с коническим слоем форсуночный и эжекционный: 1 – корпус; 2– опорная решетка; 3– слой шаров; 4– брызгоуловитель; 5 – ограничительная решетка; 6 – форсунка; 7 – емкость с постоянным уровнем жидкости

Газопромыватели центробежного действия. Наиболее распространены центробежные скрубберы, которые по конструктивному признаку можно разделить на два вида: 1) аппараты, в которых закрутка газового потока осуществляется при помощи центрального лопастного закручивающего устройства; 2) аппараты с боковым тангенциальным или улиточным подводом газа.

Скоростные газопромыватели (скрубберы Вентури). Основной частью аппаратов является труба-распылитель, в которой обеспечивается интенсивное дробление орошаемой жидкости газовым потоком, движущимся со скоростью 40–150 м/с. Имеется также каплеуловитель.

Электрофильтры. Очистка газа от пыли в электрофильтрах происходит под действием электрических сил. В процессе ионизации молекул газов электрическим разрядом происходит заряд содержащихся в них частиц. Ионы абсорбируются на поверхности пылинок, а затем под воздействием электрического поля они перемещаются и осаждаются к осадительным электродам.

Для обезвреживания отходящих газов от газообразных и парообразных токсичных веществ применяют следующие методы: абсорбции (физической и хемосорбции), адсорбции, каталитические, термические, конденсации и компримирования.

Абсорбционные методы очистки отходящих газов подразделяют по следующим признакам: 1) по абсорбируемому компоненту; 2) по типу применяемого абсорбента; 3) по характеру процесса – с циркуляцией и без циркуляции газа; 4) по использованию абсорбента – с регенерацией и возвращением его в цикл (циклические) и без регенерации (не циклические); 5) по использованию улавливаемых компонентов – с рекуперацией и без рекуперации; 6) по типу рекуперируемого продукта; 7) по организации процесса – периодические и непрерывные; 8) па конструктивным типам абсорбционной аппаратуры.

Для физической абсорбции на практике применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей и щелочей, органические вещества и водные суспензии различных веществ.

Выбор метода очистки зависит от многих факторов: концентрации извлекаемого компонента в отходящих газах, объема и температуры газа, содержания примесей, наличия хемосорбентов, возможности использования продуктов рекуперации, требуемой степени очистки. Выбор производят на основании результатов технико-экономических расчетов.

Адсорбционные методы очистки газов используют для удаления из них газообразных и парообразных примесей. Методы основаны на поглощении примесей пористыми телами-адсорбентами. Процессы очистки проводят в периодических или непрерывных адсорберах. Достоинством методов является высокая степень очистки, а недостатком – невозможность очистки запыленных газов.

Каталитические методы очистки основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности твердых катализаторов. Очистке подвергаются газы, не содержащие пыли и катализаторных ядов. Методы используются для очистки газов от оксидов азота, серы, углерода и от органических примесей. Их проводят в реакторах различной конструкции. Термические методы применяют для обезвреживания газов от легко окисляемых токсических примесей.

Очистка газов от диоксида серы

Для очистки отходящих газов от диоксида серы предложено большое количество хемосорбционных методов, применение нашли только некоторые из них. Это из-за того, что объёмы отходящих газов велики, а концентрации SO2 в них малы, газы характеризуются большой температурой и значительным содержанием пыли. Для абсорбции могут быть использованы вода, водные растворы и суспензии солей щелочных и щелочноземельных металлов.

Адсорбционные методы очистки. Недостатки абсорбционных методов очистки газов от диоксида серы привели к разработке процессов, основанных на использовании твердых хемосорбентов – путем их введения в пылевидной форме в топки и (или) газоходы теплоэнергетических агрегатов. В качестве хемосорбентов могут быть использованы известняк, доломит или известь. Для увеличения активности хемосорбентов, подавления процесса окисления SO2 в SO3 и решения некоторых других задач наряду с поглотителем диоксида серы вводят ряд специальных добавок в виде дешевых неорганических солей, оксихлорида меди, оксида магния и других веществ.

Наряду с хемосорбентами в качестве агентов для связывания диоксида серы могут быть использованы некоторые оксиды металлов.

Сухие процессы санитарной очистки газов от диоксида серы обеспечивают возможность реализации обработки газов при повышенных температурах без увлажнения очищаемых потоков, что позволяет снизить коррозию аппаратуры, упрощает технологию газоочистки и сокращает капитальные затраты на нее. Наряду с этим они обычно предусматривают возможность цикличного использования поглотителя и (или) утилизацию продуктов процесса очистки газов.

К сухим способам относят также каталитическое окисление диоксида серы (и поглощение диоксида серы адсорбентами.

Методы каталитической и термической очистки газов. Разработанная технология каталитической очистки отходящих газов от диоксида серы основана на принципе окисления SO2 в SO3, используемом в производстве серной кислоты нитрозным (башенным) либо контактным методом.

Очистка газов от сероводорода