Смекни!
smekni.com

Использование радиоактивационного метода в анализе объектов окружающей природной среды (стр. 5 из 6)

В качестве материалов, пригодных для изготовления устройств размещения проб в реакторе и контейнеров для облучаемых материалов, были выбраны ядерно-чистый графит и полиэтилен, как наименее подверженные активации.

Большое значение для процесса активации исследуемых материалов имеют нейтронно-физические характеристики поля излучения в области размещения проб. Для реактора ИГР таким пространством является свободный объем экспериментальных каналов. Анализ спектральных характеристик поля нейтронов в экспериментальных каналах реактора, выполненный на основании экспериментальных и расчетных данных, позволил прийти к следующим заключениям:

- тепловая составляющая спектра нейтронов в экспериментальных каналах реактора ИГР не превышает 50%. Наличие существенной надтепловой и быстрой составляющих спектра нейтронов с энергией нейтронов свыше 3 МэВ указывает на возможность их активного использования для активации материалов проб. При этом может быть получена дополнительная информация об элементном составе исследуемых материалов, что в дальнейшем нашло свое подтверждение в экспериментальных работах;

- отличия спектров в центре и на периферии активной зоны реактора незначительны. Этот факт позволяет существенно снизить объемы работ, связанных с определением спектральных характеристик поля нейтронов во время облучения проб. Уменьшение объема работ достигается путем замены полномасштабных исследований спектра нейтронов по всему объему канала определением относительного распределения флюенса нейтронов по его высоте и спектральных характеристик в какой-либо одной контрольной точке.

В экспериментах по определению относительных величин распределения нейтронных потоков в реакторе ИГР (рисунки 1, 2) было установлено, что отличия в значениях нейтронных потоков по высоте экспериментальных каналов реактора не превышают 45%, а распределение нейтронного потока по радиусу экспериментальных каналов является равномерным с точностью до величины погрешности измерений (3%).

Отсутствие значительных неравномерностей в нейтронном потоке внутри экспериментальных каналов реактора ИГР является еще одной отличительной особенностью, упрощающей проведение НАА. Свойство равномерности потока значительно сокращает объем работ, связанных с определением спектра и флюенса нейтронов, упрощает и делает более точной всю процедуру активационного анализа.


Рисунок 1 − Вертикальное сечение реактора ИГР

Обозначения на рисунке 1

1 − кожух;

2 − экран боковой;

3 − отражатель;

4 − активная зона (неподвижная и подвижная части);

5 − канал ионизационной камеры;

6 − канал органов регулирования;

7 − боковой экспериментальный канал;

8 − центральный экспериментальный канал;

9 − канал физических измерений;

10 − канал термоэлектрического преобразователя;

11 − биологическая защита;

12 − бак с водой

13 − полость охлаждающей воды;

14 − перекрытие верхнее.


Рисунок 2 − Распределение нейтронов по высоте каналов ИГР

Учитывая потенциальные значительные размеры проб, в работе была проведена их оптимизация по условиям облучения и измерений. На основании данных об элементном составе геологических материалов была проведена оценка сечения захвата ими нейтронов. В результате последующих вычислений было установлено, что толщина пробы не должна превышать 10 мм. Основным критерием для оптимизации диаметра проб являлась приемлемая (до 20% при выполнении рядовых анализов) величина абсолютной погрешности, возникающей при определении содержания элементов, имеющих неоднородные включения (например, частица самородного золота). Предварительная оценка оптимального диаметра проб была выполнена расчетным путем. Значение оптимального диаметра проб составило 50 мм. Для подтверждения правильности принимаемых решений были проделаны эксперименты с различными по размеру пробами, содержащими самородное золото. В ходе экспериментов был выполнен статистический анализ результатов определений в пробах самородного золота.[4, 5]

Нейтронно-активационное определение эссенциально значимых микроэлементов в материнском молоке.

Оптимальным продуктом для питания детей раннего возраста является грудное молоко, что обусловлено сбалансированностью пищевых компонентов, в том числе и микроэлементов. Недостаток или избыток последних приводит к специфическим нарушениям развития или заболеваниям. В связи с этим нами было изучено содержание йода, селена, железа, цинка и марганца в грудном молоке разных периодов лактации, что в настоящее время является мало изученным вопросом. Выбор элементов определяется как их значимостью для организма, так и ожидаемой дефицитностью для региона.

Нейтронно-активационный анализ благодаря своей недеструктивности и высокой чувствительности наиболее оптимален для анализа таких объектов. Пробы перед облучением подвергались лиофильной сушке, аликвотные части взвешивались и упаковывались в кварцевые или полиэтиленовые ампулы, обеспечивающие герметичность при облучении. В качестве образцов сравнения были использованы злаковая травосмесь (СБМТ-02) и молоко сухое (IAEA, МАГАТЭ). При анализе по короткоживущим изотопам (йод, марганец) пробы облучались совместно с эталонами 20-30секунд, а по долгоживущим (цинк, железо, селен) пять часов в потоке тепловых нейтронов 5,0 · 1013 нейтр/см2сек .

Особенностью активационного анализа данных объектов является их интенсивный радиолиз в процессе облучения с возможным образованием летучих металлоорганических соединений, поэтому пробы перед вскрытием охлаждались жидким азотом. Содержимое ампул переносили в измерительные емкости, ампулы промывали этиловым спиртом, который объединяли с сухой частью пробы. Относительное среднеквадратическое отклонение для всех элементов в интервале определяемых концентраций не превышало 10-12%.

Полученные результаты позволяют выявить некоторые органические поражения в организме матери и наметить меры по предотвращению развития патологических изменений у ребенка.

Нейтронно-активационное определение содержания золота и серебра в хвостах золотодобывающих предприятий.

Нейтронно-активационный анализ широко применяется при определении содержания золота, серебра и других редких и благородных металлов в золотоносных рудах, где их содержание составляет от нескольких до десятков граммов на тонну. Для определения золота в основном применяется инструментальный вариант НАА. Однако, эксперименты показали, что в хвостах золотодобывающих промышленных объектов, где содержание золота составляет 0,07-0,1 г/т, а Na, S, Mn, Fe, Cu, As, Sb, и некоторых других - от нескольких сот граммов на тонну до 3-5 %, проведение инструментального НАА оказалось невозможным. Поэтому цель нашей работы - разработать методику определения золота и серебра в хвостах с их радиохимическим выделением. Основная сложность заключалась во вскрытии образца. Экспериментально установлено, что при его кипячении в смеси HCl:HNO3 (3:1) удается практически полностью перевести в раствор Au, Ag, As, Sb, Fe, а также Na, K, Cu, Sc и некоторые другие элементы. Исследование нерастворенного остатка показало, что химический выход золота и серебра в стадии растворения составляет почти 100 %.

Для селективного отделения золота можно использовать анионообменные смолы Dowex-1_8 и АВ-17 из солянокислых и азотнокислых растворов, в которых коэффициент распределения золота больше 103. Однако в этих условиях невозможно селективно отделить серебро. По нашим данным, одностадийное селективное отделение аналитических радионуклидов золота и серебра от мешающих можно проводить в экстракционно-хроматографической системе ТБФ-1М HBr. Коэффициент распределения золота в ней составляет 3000, а серебра - 450, в то время, как коэффициенты распределения As, Fe, Sb и ряда других элементов < 1 и практически не сорбируются колонкой. Только In, Cd, Sn и Zn заметно сорбируются, однако их содержание достаточно низкое и не мешало определению Au и Ag. Полные химические выходы Au и Ag по стадиям растворения и разделения - 92-95 %.

Методика анализа: 0,05-0,07 г образца вместе с эталонами определяемых элементов облучали в вертикальном канале ВВР-СМ с плотностью потока нейтронов 1.1014 n.см-2-1 в течение 1-2 ч. Через день после облучения образец распаковывали, кипятили три раза в смеси HCl+HNO3 (3:1), каждый раз отделяя раствор декантацией. Полученные растворы объединяли и упаривали. Остаток растворяли в 5 мл

1 М HBr и переносили в колонку с ТБФ (диаметр колонки 0,5 см, высота слоя сорбента 4-5 см) и элюировали 20-25 мл 1М HBr. Сорбент переносили в полиэтиленовый флакон и измеряли на гамма-спектрометре.

По разработанной методике проведены анализы более 50 образцов для контроля содержания Au и Ag в исходном образце и разных фракциях после обработки СВЧ полем при разработке технологии увеличения извлекаемости золота и серебра из хвостов золотодобывающих промышленных объектов. Результаты анализов некоторых образцов, приведенных в таблице, показали, что основное содержание золота и серебра концентрируется в магнитной фракции (в 9 раз больше, чем в исходной), в то время, как в других фракциях оно уменьшается. [12]

ГЛАВА 3. СОВРЕМЕННОЕ ОБОРУДОВАНИЕ

В настоящее время изделия отечественного ядерного приборостроения выполняются на уровне лучших зарубежных образцов, пользуются устойчивым спросом и служат для выполнения измерительных, контрольных и управляющих функций в атомной энергетике и атомной промышленности, в том числе для поиска, разведки и разработки месторождений радиоактивных минералов, контроля радиационно-опасных объектов, безопасности персонала и защиты окружающей среды. Широко используются приборы и измерительные системы для проведения научных исследований в экспериментальной ядерной физике, при исследовании и освоении космического пространства, в военной промышленности, медицине, сельском хозяйстве и многих других областях науки, техники и народного хозяйства. В соответствии с действующими стандартами, нормами и рекомендациями основным классификационным признаком технических средств ядерного приборостроения является измеряемый (контролируемый) радиационный параметр. По этому признаку различают: