План
Введение
1. Методы оценки загрязнения газовых потоков
2. Методы оценки параметрических загрязнений
3. Методы оценки загрязнения водной среды, почв, грунтов и растительности
Список литературы
Введение
Количественная оценка промышленно-транспортных воздействий на окружающую среду необходима для:
—определения значимости отдельных факторов и выявления соответствующих закономерностей;
—разработки эффективных механизмов управления природоохранной деятельностью и рациональным использованием природных ресурсов в промышленности и на транспорте.
Она осуществляется в результате мониторинга промышленно-транспортных объектов и окружающей среды,т.е. слежения за промышленно-транспортными объектами как источниками загрязнений и изменением состояния окружающей природной среды, а также предупреждения о создающихся критических ситуациях, вредных или опасных для здоровья людей и других живых организмов.
Особенности мониторинга объектов промышленности и транспорта, диктующие требования к измерительным приборам, оборудованию, программным средствам и расчетным методикам, связаны с:
—множественностью подвижных источников загрязнения переменной интенсивности выбросов во времени и в пространстве;
—распределенностью источников загрязнений на значительной площади территории;
—наличием большого числа параметров, которые необходимо измерять регулярно или непрерывно с высокой степенью достоверности.
В связи с этим возникают особые требования к конструкции приборов, использованию специальных методов измерений и оценки экологически значимых показателей транспортных средств, материалов, технико-эксплуатационного состояния инженерных сооружений, параметров состояния окружающей среды. Речь идет о создании комплексной системы мониторинга на основе аэрокосмического зондирования и наземного оперативного сопровождения с использованием стационарных и передвижных постов наблюдений.
Обязательным условием успешной работы такой системы является широкое использование специальных программных средств и математических методов обработки, анализа массивов текущей информации о промышленно-транспортных объектах и изменении состояния окружающей среды, восстановления информации о характеристиках транспортных потоков, уровнях загрязнения воздуха, воды, почвы, растительности на значительной площади территории (до 1000 км2), используя в качестве исходных данных результаты измерений этих параметров в отдельных (репрезентативных) точках пространства. Эти методы и средства необходимы для визуализации и представления результатов мониторинга в форме, удобной для принятия эффективных управляющих решений.
1. Методы оценки загрязнения газовых потоков
Для определения концентраций вредных примесей в атмосферном воздухе вблизи автомагистралей и в отработавших газах двигателей используются разные методы оценки, когда анализируются индивидуальные пробы газа, взятые дискретно и при непрерывных измерениях.
Основные требования к отбору проб газа и его анализу следующие:
—все части системы отбора должны быть инертны по отношению к исследуемому компоненту;
—температура системы отбора проб должна поддерживаться на уровне, исключающем конденсацию паров или взаимодействие компонентов исследуемой газовой смеси друг с другом;
—объем пробы должен быть точно измеренным и достаточным для обеспечения требуемой точности измерений.
Автоматические приборы непрерывного действия используются для оперативного контроля уровня загрязнения атмосферного воздуха вблизи интенсивных источников выбросов (объектов энергетики, автомагистралей, химических производств и др.). Для определения токсичности автомобилей (двигателей) используют приборы анализа индивидуальных пробна определенном режиме работы двигателя или при испытаниях по ездовым циклам, а также приборы непрерывного действия.
В газоаналитической аппаратуре реализуются следующие методы измерений:
1. Непосредственное измерение показателя, характеризующего вредное вещество, без изменения химического состава пробы газа.
Используются приборы, построенные на принципах избирательной абсорбции света в инфракрасной, ультрафиолетовой и видимой частях спектра, парамагнетизма, изменения плотности, теплопроводности, показателя преломления света.
2. Вредное вещество, подлежащее измерению, переводится путем химических реакций в состояние, обладающее свойствами, доступными автоматическому измерению. Используются приборы фотометрического, гальванометрического, потенциометрического, термохимического принципов действия.
В конструкциях наиболее распространенных анализаторов различных газов используются разнообразные методы (табл.1).
Таблица1. Методы анализа загрязнения воздуха
Метод анализа | Вещество |
Абсорбционный метод спектрального анализа (инфракрасная и ультрафиолетовая области спектра)Пламенно-ионизационныйХемилюминесцентныйФлуоресцентный, пламенно-фотометрическийРадиометрический, гравиметрическийЭлектрохимический | СО, О3Углеводороды, органические вещества NO, NO2, О3SO2, H2S ПыльСО, SO2,H2S |
Абсорбционный метод спектрального анализа газовоснован на свойстве веществ избирательно поглощать часть проходящего через них электромагнитного излучения. Специфичность спектра поглощения позволяет качественно определять состав газовых смесей, а его интенсивность связана с количеством поглощающего энергию вещества. Каждому газу присуща своя область длин волн поглощения. Это обусловливает возможность избирательного анализа газов.
Сущность метода заключается в следующем: если поочередно (путем обтюрации) пропускать поток монохроматического инфракрасного (ИК) излучения, образованный после прохождения им интерференционного фильтра, через кювету с используемой газовой смесью и без нее, то на приемнике ИК-излучения будет регистрироваться переменный сигнал, который несет информацию о количестве ИК-энергии, поглощенной анализируемым газом с частотой обтюрации и, следовательно, о концентрации анализируемого газа. Анализаторами этого типа производится в частности оценка концентрации СО в атмосферном воздухе.
Недисперсионные оптико-акустические (инфракрасные) газоанализаторы широко применяются при контроле содержания СО, пропана СзH8, гексана С6H14 в отработавших газах бензиновых двигателей при работе на холостом ходу и под нагрузкой. Разработаны и комбинированные приборы для одновременного определения содержания суммарных углеводородов, СО в отработавших газах и частоты вращения коленчатого вала в двигателях автомобилей и мотоциклов.
В энергетике используются газоанализаторы, в которых для оценки концентраций газовых примесей вместо инфракрасных излучателей используются ультрафиолетовые.
Здесь концентрации примесей также определяются по спектру поглощения. При прохождении светового луча через газовую среду часть его энергии поглощается или рассеивается. Молекула определенного вещества (SO2, NO, NO3, NH3) поглощает энергию в своем специфическом диапазоне длин волн. Измерение концентраций в автоматическом режиме рассматриваемых веществ происходит одновременно без сложной процедуры сканирования спектра.
Электрохимический метод газового анализаоснован на использовании химических сенсорных датчиков, состоящих из двух чувствительных элементов и определенного химического покрытия, которое непосредственно контактирует с анализируемой средой и на котором происходит адсорбция анализируемого вещества. В зависимости от того, какие физические свойства, зависящие от количества адсорбированного вещества, измеряются, датчики делятся на потенциометрические, кулонометрические, полярографические и др.
Электрохимические газоанализаторы отличаются сравнительной простотой, низкой чувствительностью к механическим воздействиям, малыми габаритами и массой, незначительным энергопотреблением.
Пламенно-ионизационные газоанализаторыиспользуются для измерения суммарной концентрации углеводородов различных классов, контроль которых избирательными методами анализа весьма сложен. Они обеспечивают надежное измерение в диапазоне концентраций 10—10 000 млн-1, отличаются высокой чувствительностью (до 0,001 млн1) и малой инерционностью. Позволяют раздельно определять содержание метана и реакционноспособных углеводородов, образующих в атмосфере фотохимический смог.
Метод основан на ионизации углеводородов в водородном пламени. В чистом водородном пламени содержание ионов незначительно. При введении углеводородов в пламя количество образующихся ионов значительно возрастает и под действием приложенного электрического поля между коллектором и горелкой возникает ионизационный ток, пропорциональный содержанию углеводородов. Некоторые из газоанализаторов данного типа имеют встроенный генератор водорода, что позволяет отказаться от внешних источников этого газа — газогенераторов или баллонов с водородом.
Хемилюминесцентный методгазового анализа применяется для измерения концентраций NOx, О3 и основан на реакции этих компонентов, подающихся одновременно в реакционную камеру, которая имеет вид:
NO+O3→ NO2 (NO2')+O2
Возбужденная молекула NO2 ' (образуется 5—10% от общего количества молекул NO2) отдает избыток энергии в виде излучения (в диапазоне волн длиной 600—2400 нм, с максимумом при 1200 нм)
NO2' → hv+NO2
Интенсивность излучения, измеряемого фотоумножителем, пропорциональна концентрации оксидов азота. Озон получают в генераторах в результате воздействия тлеющего разряда или ультрафиолетового излучения на кислородсодержащую смесь (воздух).