А=200с⅔*мг*град⅓/г;
М – мощность вредного вещества, выбрасываемого в атмосферу, т/год;
F – коэффициент, учитывающий скорость оседания вредных веществ в атмосферном воздухе (для газов и мелкодисперсных аэрозолей F=1);
m,n – коэффициенты, учитывающие условия выхода газовоздушной смеси из устья источника выброса;
Н – высота источника выброса над уровнем земли, м;
V1 - оббьем газовоздушной смеси, мі/с;
∆Т – разность температур газовоздушной смеси воздуха наиболее жаркого месяца:
Тr(1)=120 ℃,Тr(2/10)=29℃ ,Твоздуха=27℃;
Значение опасной скорости ветра Uм(м/с) на уровне флюгера(10м от уровня земли), при которой имеет место наибольшее значение приземной концентрации вредных веществ в атмосферном воздухе (См);
при Vм < 0.5 Uм = 0.5
при 0.5 < V м <2 Uм = Vм
Таблица 11
Vм, (м⅔*мг*град⅓/с⅓) | Uм, м/с |
1.44 | 1.44 |
0.49 | 0.49 |
0.49 | 0.49 |
0.49 | 0.49 |
0.49 | 0.49 |
0.42 | 0.5 |
0.36 | 0.5 |
0.52 | 0.52 |
0.52 | 0.52 |
0.52 | 0.52 |
Таблица 12
Направление ветра | U, м/с | Uм , м/с | U/Uм |
В | 4.42 | 1.440.490.50.52 | 3.198.848.5 |
СВ | 1.56 | 1.440.490.50.52 | 1.083.23.123 |
С | 0.91 | 1.440.490.50.52 | 0.631.81.821.75 |
СЗ | 0.91 | 1.440.490.50.52 | 0.631.81.821.75 |
ЮЗ | 1.3 | 1.440.490.50.52 | 0.92.62.62.5 |
Ю | 0.39 | 1.440.490.50.52 | 0.270.790.780.75 |
ЮВ | 1.17 | 1.440.490.50.52 | 0.82.42.32.25 |
З | 2.34 | 1.440.490.50.52 | 1.64.84.74.5 |
где U – скорость ветра: (м/с);
Uм – значение «опасной» скорости ветра: (м/с);
Вычислим максимальную приземную концентрацию при неблагоприятных метеорологических условиях и скорости ветра;
Сми = rЧСм = 0.66Ч0.123 = 0.081
r | См, мг/мі | Сми,мг/мі |
0.660.180.180.19 | 0.1230.0310.0150.48 | 0.0810.0050.0030.091 |
4.320.630.650.69 | 0.12 | 0.50.0760.0780.083 |
0.752.011.952.2 | 0.17 | 0.130.340.330.37 |
0.752.11.952.2 | 0.078 | 0.0580.160.150.17 |
0.970.870.870.94 | 0.054 | 0.050.0470.0470.051 |
0.270.910.910.88 | 0.062 | 0.0170.0560.0560.047 |
0.921.011.091.14 | 0.028 | 0.0260.020.030.032 |
3.160.370.380.39 | 0.006 | 0.0190.0020.0020.002 |
где r – безразмрная величина;
См – максимальная приземная концентрация, мг/мі
Определим безразмерную величину d;
d = 4.95 Ч Vм Ч (1+ 0.28 Ч і√f) = 4.95 Ч 1.44 Ч (1+ 0.28 Ч і√0.07) = 7.95
Таблица 14
Vм, (м⅔*град⅓/с⅓) | f | d |
1.44 | 0.07 | 7.95 |
0.49 | 21.6 | 4.32 |
0.49 | 21.6 | 4.32 |
0.49 | 21.6 | 4.32 |
0.49 | 21.6 | 4.32 |
0.42 | 17.3 | 3.58 |
0.36 | 13.8 | 2.98 |
0.52 | 22.4 | 4.6 |
0.52 | 22.4 | 4.6 |
0.52 | 22.4 | 4.6 |
где Vм – безразмерный параметр;
f – безразмерный параметр;
Найдем расстояние, на котором концентрация максимальная;
Хм = dЧН = 7.95Ч36 = 286.2
Таблица 15
d | Н, м | Хм, м |
7.95 | 36 | 286.2 |
4.32 | 12.5 | 54 |
4.32 | 12.5 | 54 |
4.32 | 12.5 | 54 |
4.32 | 12.5 | 54 |
3.58 | 12.5 | 44.75 |
2.98 | 12.5 | 37.25 |
4.6 | 13 | 59.8 |
4.6 | 13 | 59.8 |
4.6 | 13 | 59.8 |
где d- безразмерная величина;
Н – высота источника выброса над уровнем земли, м;
Определим отношение;
Х = 20 = 0.069
Хм 286.2
Таблица16
Х,м | Хм, м | Х/Хм |
286.2 | 0.069 | |
54 | 0.37 | |
54 | 0.37 | |
54 | 0.37 | |
54 | 0.37 | |
44.75 | 0.45 | |
37.25 | 0.54 | |
59.8 | 0.33 | |
59.8 | 0.33 | |
59.8 | 0.33 |
где Х – расстояние по горизонтали от центра фонаря до расчетной точки = 20м;
Хм – расстояние, на котором концентрация максимальная;
Определим концентрацию на расстоянии Х от центра аэрационного фонаря при скорости ветра U и его направлении поперек фонаря;
С = S1 Ч См = 0.026 Ч 0.123 = 0.0032
Таблица 17
S1 | См, мг/м і | С, мг/м і |
0.026 | 0.1230.0310.0150.48 | 0.00320.000810.00040.012 |
0.49 | 0.12 | 0.059 |
0.49 | 0.17 | 0.085 |
0.49 | 0.078 | 0.038 |
0.49 | 0.054 | 0.026 |
2.05 | 0.062 | 0.13 |
0.72 | 0.028 | 0.02 |
0.41 | 0.006 | 0.0025 |
где S1 – безразмерную величину определяемая при «опасной» скорости ветра Uм;
См – максимальная приземная концентрация;
Найдем безразмерную величину pU/Uм >1
P = 0.32 Ч (U/Uм) + 0.68 = 0.32 Ч 3.1 + 0.68 = 1.67
при 0.25 < U/Uм < 1
p = 8.43Ч ( 1 - U/Uм) + 1 = 8.43 Ч (1-0.63) + 1 = 1.06
Таблица 18
U/Uм | p |
3.198.848.5 | 0.673.63.53.4 |
1.083.23.123 | 1.021.71.71.64 |
0.631.81.821.75 | 1.061.21.31.2 |
0.631.81.821.75 | 1.061.21.31.2 |
0.92.62.62.5 | 11.51.51.48 |
0.270.790.780.75 | 2.75111 |
0.82.42.32.25 | 11.451.421.4 |
1.64.84.74.5 | 1.22.22.22.1 |
Рассчитываем расстояние от источника выброса, на котором при скорости ветра U и не благоприятных метеорологических условиях концентрация достигает максимального значения, м;
Хми = pЧ Хм = 0.67 Ч 286.2 = 191.7
Таблица 19
р | Хм, м | Хми,м |
0.673.63.53.4 | 286.2 | 191.71030.31001.7937.1 |
1.021.71.71.64 | 54 | 55.191.891.889.1 |
1.061.21.31.2 | 54 | 57.264.870.264.8 |
1.061.21.31.2 | 54 | 57.264.870.264.8 |
11.51.51.48 | 54 | 54818179.9 |
2.75111 | 44.75 | 12344.7544.7544.75 |
11.451.421.4 | 37.25 | 37.255452.952.1 |
1.22.22.22.1 | 59.8 | 71.8131.6131.6125.6 |
где Хм – расстояние, на котором концентрация максимальная;
р – безразмерная величина;
Вывод по проведенному расчету: См, Сми > ПДК выбрасываемых газов приведенных в таблице. Параметры зон с максимальной концентрацией: Хм =37.25 ч 286.2, и Хми = 52.1ч 1030.3 м. Следовательно, при проектировании размещения объектов на территории предприятия их нужно располагать на расстоянии, превышающем данные. Для уменьшения приземных концентраций загрязняющих веществ нужно применить очистку выбросов.
2. Основные понятия и определения процесса пылеулавливания и физико-химические свойства пыли
Понятия и определения
Пыль представляет собой дисперсную систему с газообразной дисперсионной средой и твердой дисперсной фазой, состоящей из частиц от квазимолекулярного до макроскопического размеров, обладающих свойством находится во взвешенном состоянии более или менее продолжительное время.
Аэрозоли также представляют собой дисперсные системы с газообразной (воздушной) дисперсной средой и твердой или жидкой дисперсной фазой. Скорость оседания частиц аэрозоля очень мала, и они могут, неопределенно долгое время находится во взвешенном состоянии. Наиболее тонкие частицы аэрозоля по размерам приближаются к наиболее крупным молекулам, а наиболее крупные достигают 1 мкм.
Под термином пыль подразумевается не аэродисперсная система, а только ее твердая фаза, т. е. твердые частицы.
Уловленные частицы аэрозоля, представляющие собой очень тонкий порошок, согласно терминологии коллоидной химии иногда называют аэрогелем. Его частицы чаще всего являются продуктами конденсации, но в ряде случаев могут образовываться при тонком измельчении твердых материалов.
Пыли аэрозоли и порошки обычно полидисперсны, т. е. частицы их дисперсной фазы имеют неодинаковый размер. В природе и технике монодисперсные пыли, и аэрозоли встречаются крайне редко. Лишь у не многочисленных порошков состав приближается к монодисперсному. В технике монодисперсные порошки изготавливают в очень небольших количествах для специальных целей, в частности для градуировки приборов дисперсного анализа.
Масса частиц, содержащаяся в единице объема газа или воздуха, называется концентрацией пыли, пылесодержанием или запыленностью и обозначается С. Число частиц n в единице объема газа или воздуха представляет собой концентрацию пыли по числу частиц и обозначается Сn.
Седиметационной скоростью vs называется постоянная скорость оседания частиц, которую она приобретает в спокойной среде под влиянием силы тяжести. Она зависит от размера, формы, плотности вещества частицы, а так же от плотности и вязкости среды.
Скорость витания (парения) частицы представляют собой скорость вертикально восходящего потока, численно равную седиментационной скорости.
Размер частицы д, определяющий ее крупность, может быть охарактеризован длиной стороны частицы, размерами ее проекции, шириной ячейки сита. Диаметр точно характеризует размер только шарообразных частиц.
Эквивалентный диаметр дэ применяется для характеристики размера частиц, отличающихся по своей форме от шара. Существуют следующие понятия эквивалентного диаметра: диаметр шара, оббьем которого равен объему частицы; диаметр круга, площадь которого равна проекции частицы , определяемой путем микроскопирования.