Смекни!
smekni.com

Усовершенствование системы водоподготовки производства этил-бензол-стирола (стр. 4 из 14)

Одной из причин коррозии металлов является их термодинамическая неустойчивость в различных средах, в том числе и водных. В процессе коррозии металлы переходят в оксиды, которые термодинамически более устойчивы по сравнению с чистыми металлами. Коррозионные процессы не могут быть полностью предотвращены, поэтому для обеспечения надежной работы оборотных систем необходимо, чтобы она протекала равномерно с невысокой интенсивностью. Такие условия можно создать, совместно решая задачи рационального аппаратурного оформления охлаждающих систем и выбора соответствующих конструкционных материалов.

В процессе эксплуатации охлаждающих систем разрушение металла происходит в основном под действием электрохимической коррозии, что приводит к переходу значительных количеств продуктов коррозии в циркуляционную воду. На интенсивность коррозии существенное влияние оказывают величина рН оборотной воды и содержание в ней растворенного кислорода. В щелочной среде при значениях рН > 8 коррозия углеродистой стали уменьшается вследствие образования на поверхности металла плотной нерастворимой пленки гидроокиси. При пониженных значениях рН в присутствии свободной агрессивной углекислоты происходит растворение защитных карбонатных и окисных пленок. Экспериментально установлено, что скорость коррозии малоуглеродистой стали, являющейся основным конструкционным материалом теплообменного оборудования, усиливается с ростом концентрации сульфатов и хлоридов в оборотной воде. При увеличении содержания сульфатов с 50 до 2500 мг/л скорость коррозии стали увеличивается в два раза. Повышение концентрации хлоридов в присутствии небольших количеств сероводорода, аммиака, нитритов приводит к разрушению латунных конденсаторных трубок в результате их обесцинкования.

С увеличением скорости движения воды интенсивность коррозии возрастает, однако в дальнейшем более равномерное распределение кислорода по поверхности металла способствует его пассивации. При более высоких скоростях потока и наличии в воде взвешенных веществ и абразивных примесей происходит механическое разрушение защитных пленок.

Повышение концентрации растворимых солей в оборотной воде приводит к увеличению электропроводности воды и активизации коррозионных процессов; причем в мягкой воде, содержащей растворенный кислород, коррозия конструкционных материалов значительно выше, чем в жесткой воде аналогичной минерализации, что вы­звано меньшей буферной емкостью мягких вод. В отсутствии ингибиторов предельное солесодержание оборотной воды не рекомендуют допускать выше 2 кг/м3, хотя иногда минерализация оборотной воды превышает эту величину и достигает 3 кг/м3.

Из сопоставления требований к качеству воды в охлаждающих системах оборотного водоснабжения следует, что, несмотря на значительное расхождение по отдельным позициям, в целом показатели близки[4].


1.6. Оборудование, применяемое для охлаждения воды

1.6.1. Градирни

Градирни используются в системах оборотного водоснабжения, требующих устойчивого и глубокого охлаждения воды, и, как правило, проектируются по типовым и индивидуальным проектам, разработанным специализированными организациями.

Охладительный эффект градирен возрастает с увеличением контакта воды с воздухом, который достигается различными способами.

По принципу охлаждения воды градирни могут быть испарительными и поверхностными.

По способу подвода воздуха к охлаждаемой воде испарительные градирни подразделяют на три основные группы:

- открытые или атмосферные, поступление воздуха в которые происходит продувкой их ветром и естественной конвекцией;

- башенные имеющие естественную тягу воздуха за счет разности плотностей наружного воздуха и нагретого влажного воздуха внутри градирни;

- вентиляторные, движение воздуха в которых происходит за счет тяги, создаваемой вентиляторами.

К поверхностным относятся радиаторные (так называемые «сухие» градирни), охлаждение воды в которых происходит через стенку радиаторов. Движение воздуха в этих градирнях обеспечивается либо вентиляторами, либо за счет тяги, создаваемой башней.

Большинство испарительных градирен, несмотря на разнообразие конструкций, имеют ряд общих элементов. К ним относятся: водораспределительные системы, оросительные устройства, водоуловители, сборные резервуары [4].


1.6.2. Водораспределительные системы

Водораспределительная система предназначена для равномерного распределения охлаждаемой воды по поверхности орошения градирни, в результате которого создается необходимая поверхность водного потока, определяющая его охлаждающую способность. Распределение воды может осуществляться как по напорной, так и безнапорной схемам.

Первая представляет собой систему трубопроводов, выполненную из металлических или асбестоцементных труб, которые оборудованы разбрызгивающими соплами. Подвод воды в систему напорного водораспределения (рис. 1) осуществляется подводящим водоводом 6 к стояку 1, По коллекторам 2 и 3 вода поступает в периферийную и центральную зоны орошения, а затем по распределительным трубопроводам 5 подводится к соплам 4. На концах распределительных линий устанавлива­ют «промывные» сопла 7.

Рис. 1. Схема напорного водораспределителя

Установка разбрызгивающих сопел осуществляется двумя способами: направленными вниз факелами и направленными вверх факелами. В первом случае расстояние от сопла до оросителя принимается равным 0,8—1 м, о втором 0,3—0,5 м. Для уменьшения опасности засорения, как правило, применяют эвольвентные сопла и ударные отражатели.

Рис. 2. Насадок (а) и тарелочка (б) для безнапорных систем водораспределения градирен

Напор перед соплом поддерживают в пределах 1—3,5 м. Водораспределение осуществляют таким образом, чтобы была возможность отклю­чать отдельные части системы, что необходимо для перераспределения плотностей орошения в зимнее время. С этой целью подводящие трубопроводы с установленными на них задвижками прокладывают в две-три нитки (см. рис. 1).

При безнапорной системе водораспределения вода к разбрызгивающим устройствам поступает по лоткам. Разбрызгивание воды в безнапорных системах осуществляется обычно с помощью гидравлических насадок и тарелочек (рис. 2). Тарелочки устанавливаются под соплами.

Гидравлический расчет напорных систем заключается в определении диаметров труб и напора воды в начале системы. Расчету предшествуют определение типа и размеров разбрызгивающих сопел, их числа, разработка схемы расположения трубопроводов. Скорость движения воды в трубопроводах принимают в пределах 1,5—2,0 м/с. Гидравлический расчет лотков обычно не производят.

Поперечное сечение их устанавливают по расходу сливных трубок или по конструктивным соображениям. Скорость движения воды принимают в магистральных лотках 0,8 м/с и распределительных до 0,4 м/с.

Для обеспечения равномерного распределения воды при гидравлическом расчете систем водораспределения должно выдерживаться условие

,

где qmax, qmin, qср — соответственно максимальная, минимальная и средняя производительность разбрызгивающих устройств.

С целью интенсификации процесса охлаждения иногда применяют дифференцированное распределение воды с уменьшением плотности дождя к центру, что достигается применением гидравлических насадков или сопел различных диаметров либо изменением расстояния между ними.

Расстояние между тарелочками или соплами определяется из условия равномерного дождя. Для проведения трудоемких гидравлических расчетов совместного действия разбрызгивающих устройств существуют программы расчета на ЭВМ.

В отечественной и зарубежной практике уделяется большое внимание распределительным системам без разбрызгивания воды. Распределение воды без разбрызгивания осуществляется благодаря пуску ее через треугольные лотки с боковыми отверстиями, фильтрации через слой пористого материала, пропуску воды через щели с регулируемой шириной и др. Эти системы эффективно работают в условиях дефицита свежей воды [4].

1.6.3. Оросительные устройства

Направление движения воздуха по отношению к охлаждаемой воде в оросительных устройствах градирен может быть противоточным и поперечным. Оросительные устройства служат для создания необходимой поверхности охлаждения. Они могут быть:

- пленочного типа, теплоотдача в которых происходит главным образом с поверхности капель воды;

- пленочного типа, теплоотдача в которых происходит с поверхности водяной пленки, образующейся на щитах оросительного устройства;

- капельно-пленочного типа, теплоотдача в которых происходит как с поверхности капель, так и с поверхности пленки.

Рис. 3. Конструкции капельных оросителей из прямоугольных (а-е) и треугольных (ж, з) брусков

Капельный ороситель (рис. 3, размеры даны в мм) выполняется из деревянных реек прямоугольного или треугольного сечения, которые располагаются в определенном порядке, обеспечивающем их смачивание охлаждаемой водой и возможно меньшее аэродинамическое сопротивление воздуху. При падении капель с реек верхнего яруса оросителя на нижний образуются факелы мелких брызг, создающие большую поверхность соприкосновения с воздухом, часть воды стекает. Вода при плотности орошения до 1,4 кг/(м2×с) стекает с одной рейки на другую в виде капель.