Температура воды будет понижаться, пока количество теплоты qb, теряемое жидкостью благодаря ее поверхностному испарению, больше притока теплоты к воде qa. Понижение температуры прекратится, когда направленный от воздуха к воде поток теплоты qa станет равным потерям теплоты водой от испарения qb. Равновесие между qa и qb носит динамический характер, так как ни испарение жидкости, ни подвод теплоты от воздуха не прекращаются. Однако, чтобы процессы тепло - массообмена могли протекать беспрепятственно, к поверхности воды должно быть подведено количество теплоты q, равное количеству теплоты, отдаваемой ею в результате совместного действия обоих процессов. Для этого температура поверхностного слоя жидкости tf должна быть ниже температуры основной ее массы t, т.е. должна существовать положительная разность температур
Количественное соотношение между теплоотдачей соприкосновением и теплоотдачей испарением зависит от конкретных условий. С увеличением температуры воды общие теплопотери возрастают, причем теплоотдача испарением увеличивается быстрее, чем теплоотдача соприкосновением. При снижении температуры воды до температуры воздуха по сухому термометру потери теплоты соприкосновением становятся равными нулю, а при дальнейшем снижении температуры воды поток теплоты qa будет направлен от воздуха к воде. Когда температура воды, снижаясь, приближается к температуре воздуха по влажному термометру t, тогда потери теплоты водой в результате испарения qb остаются положительными; в то же время отрицательные потери теплоты соприкосновением возрастают по абсолютной величине. При снижении температуры воды до температуры воздуха по влажному термометру отрицательные теплопотери соприкосновением qa становятся равными положительным потерям теплоты при испарении qb. Наступает равновесное динамическое состояние, при котором результирующая составляющая теплоотдачи равна нулю, и вода не снижает свою температуру.
Следовательно, вода может быть охлаждена до температуры более низкой, чем начальная температура охлаждающего ее воздуха (по сухому термометру); это свойственно только испарительному охлаждению. Теоретическим пределом охлаждения воды является температура воздуха по влажному термометру.
где с — удельная плотность воды, кг/м3;
W = pW’ — массовый расход воды, кг/с;
r — удельная плотность воды, кг/м3;
W’— объемный расход воды, м3/с;
Dt — разница температур горячей и охлажденной воды, °С;
Т — рассматриваемый период, сут;
R — приток теплоты от солнечной радиации, Дж.
Процессы, происходящие при испарительном охлаждении, более сложные, чем теплообмен через твердую стенку. Последний имеет место в охладителях, охлаждение в которых происходит без контакта охлаждаемой воды с атмосферным воздухом — через стены теплообменников (радиаторов). Такой теплообмен называется конвективным. Он происходит при одновременном действии конвекции и теплопроводности. Конвективный теплообмен зависит от разнообразных факторов, в том числе: режима движения жидкости и воздуха, свободного или принудительного их движения, плотности, вязкости, коэффициента теплопроводности и температуропроводности жидкости и воздуха, формы и размера участвующей в конвективном теплообмене поверхности.
Удельное количество теплоты, переданной через стенку радиатора, определяется формулой Ньютона
где qр — удельное количество теплоты, кДж/(м2/ч);
aр — общий коэффициент теплопередачи от воды к воздуху через стенку радиатора, кДж/(м2×ч×°С)
t — температура воды, проходящей через радиатор, °С;
q— температура воздуха, обтекающего радиатор, °С.
Коэффициент aр определяют по экспериментальным данным [4].
1.5. Требования к качеству охлаждающей воды оборотных систем водоснабжения
Требования к качеству охлаждающей воды определяются условиями ее использования в конкретных технологических схемах с учетом специфики производства. Тем не менее, все они сводятся к обеспечению высокоэффективной работы теплообменного оборудования, инженерных сооружений и коммуникаций, входящих в состав оборотного комплекса. Для успешной реализации этой задачи необходимо осуществлять проведение таких водных режимов, при которых на поверхности охлаждающих элементов и в самой системе практически не должно возникать активных коррозионных процессов и образования каких-либо солевых, механических и биологических отложений. В противном случае нарушаются нормальные условия теплопередачи, вызывающие снижение производительности основных технологических потоков и оборудования, а также качества вырабатываемой продукции; увеличиваются энергетические затраты циркуляционных насосных станций на преодоление дополнительных гидравлических сопротивлений в охлаждающих контурах; резко ухудшаются эксплуатационные характеристики оборотных систем; происходит разрушение конструкционных материалов.
Водный режим оборотных систем существенно отличается от режима прямоточных систем. Многократный нагрев оборотной воды и ее последующее охлаждение в градирнях и брызгальных бассейнах приводит к потерям равновесной углекислоты и отложению на поверхности теплообменников и холодильников главным образом кальциевых карбонатных отложений в соответствии с реакцией
Растворимость карбоната магния значительно больше, чем карбоната кальция, и поэтому MgCO3 входит в состав накипи в незначительном количестве в результате соосаждения с СаСО3. Однако при обработке добавочной воды известью с целью ее умягчения при значениях рН > 10 в результате гидролиза образуется малорастворимое соединение — гидроокись магния: