Смекни!
smekni.com

Усовершенствование системы водоподготовки производства этил-бензол-стирола (стр. 13 из 14)

В результате крупных аварий, катастроф на химических и радиационно опасных объектах, при перевозке сильнодействующих ядовитых веществ люди, окружающая среда, здания, сооружения, транспортные средства и техника, вода, продовольствие и пищевое сырье могут быть поражены СДЯВ и РВ. Необходимость обеззараживания возникает также при массовых инфекционных заболеваниях людей и животных.

Для того чтобы исключить вредное воздействие на человека и животных радиоактивных, отравляющих, сильнодействующих веществ и болезнетвор-ных микробов, обеспечить нормальную жизнедеятельность, необходимо выполнить комплекс работ по обеззараживанию территорий, помещений, техники, приборов, оборудования, мебели, одежды, обуви, открытых частей тела. Причем делать это надо только в средствах индивидуальной защиты (противогазах, респираторах, перчатках, переднике, сапогах), при строгом соблюдении мер безопасности[44].

Обеззараживание предусматривает прежде всего механическое удаление, а также нейтрализацию химическим, физическим способами вредного вещества и уничтожение болезнетворных микробов, угрожающих здоровью и жизни людей. Оно включает выполнение таких работ как: дезактивация, дегазация, дезинфекция зараженных поверхностей, а также проведение санитарной обработки людей.

Дегазация

Дегазация – это уничтожение (нейтрализация) сильнодействующих ядовитых и отравляющих веществ или их удаление с поверхности таким образом, чтобы зараженность снизилась до допустимой нормы или полностью исчезла.

Известно немало способов дегазации, но чаще всего прибегают к механическому, физическому или химическому.

Механический – удаление отравляющего или сильнодействующего вещества с какой-либо поверхности, территории, техники, транспорта и других отдельных предметов. Обычно зараженный слой грунта срезают и вывозят в специально отведенные места для захоронения или засыпают песком, гравием, щебнем.

При физическом способе верхний слой прожигают паяльной лампой или специальными огнеобразующими приспособлениями. Из растворителей используют дихлорэтан, бензин, спирт, керосин, четыреххлористый углерод.

Наибольшее распространение нашел химический способ дегазации, основанный на применении веществ окисляющего и хлорирующего действия-хлорной извести, двухосновной соли гипохлорита кальция (ДС-ГК), дветретиосновной соли гипохлорита кальция (ДТС-ГК), хлористого сульфурила (ХС), монохлорамина Б (ДТ-1), дихлорамина Б (ДТ-2), а из веществ основного характера – едкого натра, аммиака, гашенной извести, сернистого натрия, углекислого натрия, двууглекислого аммония [40].

5.3 Требования безопасности при работе с реагентами применяемыми для обработки оборотной воды

Требования безопасности при применении ингибиторов.

Воздействие на человека, общие характеристики:

- малотоксичное вещество, трансформируется в окружающей среде;

- раздражает глаза и кожу (при продолжительном контакте), вызывает раздра­жение слизистых оболочек при попадании в желудочно-кишечный тракт.

Пути воздействия на организм: при попадании на кожу и слизистые оболочки глаз или проглатывании. Поражаемые органы, ткани и системы: глаза, кожные покровы, желудочно-кишечный тракт.

Наблюдаемые признаки и симптомы:

- слезотечение, покраснение и отечность, сопровождающиеся повышением болевой чувствительности и ощущением рези в глазах;

- при продолжительном контакте с кожей - сухость, растрескивание и шелушение кожи;

- при проглатывании: жжение и болезненность по ходу пищевода, рези в животе.

Меры первой помощи:

- при попадании на кожу, промыть кожу водой с мылом, при наличии симптомов раздражения - обратиться за медицинской помощью.

- при попадании в глаза, немедленно промывать глаза в течение 15 минут большим количеством воды, если раздражающее действие продолжает сохраняться, обратиться за медицинской помощью.

- при попадании во внутрь в органы пищеварения, дать пострадавшему выпить стакан воды с активированным углем, обратиться за медицинской помощью.

Средства первой помощи: промышленная аптечка.

Помещения, где проводятся работы с продуктом, оборудованы непрерывно действующей приточно-вытяжной вентиляцией.

Меры безопасности при работе с гипохлоритом натрия:

- технический гипохлорит натрия является сильным окислителем, вызывает раздражение кожных покровов и слизистой оболочки, гипохлорит натрия при попадании на кожу может вызвать ожоги, а при попадании в глаза – слепоту;

- при нагревании выше 350°С гипохлорит натрия разлагается с образованием хлоратов и выделением кислорода;

- гипохлорит натрия негорюч и не взрывоопасен, однако в контакте с горючими органическими веществами может вызвать самовозгорание.

Средством индивидуальной защиты являются спецодежда, резиновые перчатки, очки защитные и противопылевые респираторы.

Индивидуальная защита персонала должна осуществляться с применением специальной одежды и индивидуальных средств защиты органов дыхания и зрения - фильтрующий противогаз с коробкой марки «БКФ».

Разлитый продукт необходимо смыть большим количеством воды.

Гипохлорит натрия не допускается хранить с органическими продуктами, горючими материалами и кислотами.

Меры безопасности при обращении с медным купоросом.

Медный купорос относится к веществам третьего класса опасности. Попадая в организм человека, медный купорос вызывает желудочно-кишечные расстройства, при попадании в слизистые оболочки вызывает ожоги. Предельно - допустимая концентрация пыли медного купороса в воздухе рабочей зоны - 0,5 мг/м3.

Медный купорос негорюч, пожаро-взрывобезоопасен.

Работы с медным купоросом должны проводиться в спец. одежде и спец. обуви. Для защиты органов дыхания должны применятся респиратор типа «Лепесток» или противогаз с коробкой марки «БКФ», для защиты глаз - очки.


ВЫВОДЫ

1. Произведено обследование водооборотного узла №1838 цеха 46 завода «Мономер» ОАО «Салаватнефтеоргсинтез», системы обработки оборотной воды методом купоросирования и ингибирования ингибитором коррозии ИКБ – 4 «В». Существенным недостатком этой системы является: высокое содержание меди, сульфатов и нефтепродуктов в сточных водах, высокое солеотложение в теплообменном оборудовании, коррозионная способность оборотной воды.

2. Предложено заменить обработку оборотной воды реагентами фирмы «Nalkо».

3. Экперементальным путем была подобрана доза реагентов фирмы «Nalkо» для обработки системы оборотной воды. Оптимальной дозой для реагента NALCO 73424 является 60,00 мг/м3; для реагента реагента NALCO 8506 является 10 мг/м3.

4. Использование реагентов фирмы «Nalkо» приводит к значительному снижению концентрации меди, сульфатов, нефтепродуктов в сточных водах.

5. Применение реагентов фирмы «Nalkо» позволяет сократить потребление речной воды на 5 м3/час, снижает образование солеотложения, увелечение теплоотдачи, уменьшение расхода электроэнергии, приводит к снижению коррозии оборудования, приводит к угнетению развития роста микроорганизмов.

6. Произведен расчет предотвращенного экологического ущерба, который составит 158662,27 рублей.


Список литературы

1. Галлиев М.А., Шаретдинов Э.Ф. Экология Башкортостана: Учебник для студентов вузов. – Уфа: Издательство «Республиканский учебно-научный методический центр Госкомитета РБ по науке, высшему и среднему профессиональному образованию», 2001. 174 с.

2. Анализ природоохранной деятельности ОАО «Салаватнефтеоргсинтез» за 2004 год.

3. Ольков П.Л. Водоснабжение нефтеперерабатывающих заводов. – Уфа.: Уфимский нефтяной институт, 1998. 68с.

4. Сомов М.А. Водопроводные системы и сооружения. Учебник для вузов. – М.: Стройиздат, 1988. 399с.

5. Количественный химический анализ вод. Методика выполнения измерений массовой концентрации ионов меди в природных и сточных водах фотометрическим методом с диэтилдитиокарбаматом свинца. ПНД Ф 14.1:2.48-96. – М.: ГУАК Минприроды РФ, 1996.

6. Количественный химический анализ вод. Методика выполнения измерений рН в водах потенциометрическим методом. ПНД Ф 14.1:2:3:4.121-97. – М.: ГУАК Минприроды РФ, 1997.

7. Количественный химический анализ вод. Методика выполнения измерений содержаний сульфатов в пробах природных и очищенных сточных вод титрованием солью свинца в присутствии дитизона – М.: Госкомэкология РФ, 1996.

8. Количественный химический анализ вод. Методика выполнения измерений жесткости в пробах природных и очищенных сточных вод титриметрическим методом. – М.: Госкомэкология РФ, 1996.

9. Инструкция № 107-02. Методика выполнения измерений массовой концентрации хлор-ионов в водах. – Салават: «Салаватнефтеоргсинтез», 2004.

10. Методичесая инструкция № 864-84. Методика определения содержания нефтепродуктов в оборотной воде методом ИКС. – Салават: «Салаватнефтеоргсинтез», 2004.

11. Инструкция № 1142. Методика определения содержания железа в оборотной воде фотометрическим методом с сульфосалицилатом натрия. – Салават: «Салаватнефтеоргсинтез», 2004.

12. Инструкция № 109-01.Методика определение взвешенных веществ в оборотной воде гравиметрическим методом. – Салават: «Салаватнефтеоргсинтез», 2004.

13. Лурье Ю.Ю. Аналитическая химия промышленных сточных вод. – М.: Химия, 1984. 448с.

14. Государственный доклад о состоянии окружающей природной среды РБ в 2003 году. – Уфа.: Государственный комитет РБ по охране окружающей среды, 2004.

15. Карелин Я.А. Очистка производственных вод. – М.: Стройиздат, 1980. 153с.