Смекни!
smekni.com

Типы экологических кризисов. Критерии выхода из экологических кризисов (стр. 5 из 12)

Аэрозоли попадают в атмосферу при разбрызгивании растворов. Естественный источник таких аэрозолей — океан, поставляющий хлоридные и сульфатные аэрозоли, образующиеся в результате испарения морских брызг, в количестве около миллиарда тонн в год, то есть около 40 процентов всего аэрозоля, поступающего в атмосферу. Впрочем, вклад от человеческой деятельности здесь невелик.

Еще один мощный механизм образования аэрозолей — это кон­денсация веществ во время горения или неполное сгорание из-за недостатка кислорода или низкой температуры горения. Так, например, образуются частицы сажи при сжигании угля и других топлив. В природе главный источник таких аэрозолей — это лесные пожары, люди же добавляют аэрозоли при сжигании угля, нефти, древесины, отходов; аэрозоли поставляют дым металлургических заводов и т.п. В сумме это дает 2—3 процента от общего поступления аэрозолей в атмосферу. При горении образуются также газы — сернистый, окислы азота, выброс которых, как говорилось выше, приводит к возникновению сульфатных и нитратных аэрозолей. Этот вторичный источник аэрозолей вместе с аэрозолями, образующимися из терпенов, углеводородов и т.п., дает около 8 процентов общего поступления в атмосферу.

Аэрозоли удаляются из атмосферы тремя путями: сухим осаждением под действием тяжести (главный путь для крупных частиц), осаждением на препятствиях и вымыванием осадками.

Все сказанное выше приводит к тому, что размеры, состав, химические и физические свойства аэрозолей весьма разнообразны. Например, их размеры (радиусы) варьируют в основном в миллион раз — от тысячных долей до тысяч микрон (т. е. миллионных долей метра).

Аэрозольное загрязнение. Аэрозоли, во-первых, воздействуют на погоду и климат: оптически активные частицы с радиусами от 10-1 до 101 микронов вносят основной вклад в замутненность атмосферы; частицы с радиусами от 10-2 до 102 микронов служат ядрами конденсации влаги и способствуют образованию облаков и туманов, дождя и снега. портят здоровье людей. В течение суток через легкие человека проходит 12—14 кубометров воздуха. Концентрация аэрозоля в чистом воздухе составляет 10—12 микрограммов на кубометр, в промышленных городах вдесятеро, а иногда и в несколько десятков раз больше. Даже если учесть, что крупные частицы задерживаются в носовой полости, а очень мелкие возвращаются с выдыхаемым воздухом, то и тогда в легких жителя промышленного центра ежесуточно может оседать 1 миллиграмм аэрозолей. Химически неактивные аэрозоли накапливаются в легких и ведут к их повреждениям. Обычный кварцевый песок и другие силикаты — слюды, глины, асбест, тальк и др., накапливаясь в легких, могут приводить к таким заболеваниям, как силикоз и даже рак легких. Частыми оказываются хронические бронхиты, эмфизема легких, астма и другие аллергические заболевания. Химически активные аэрозоли, а среди них немало ядовитых, наносят вред не только легким, но и проникают в кровь, приводя к заболеванию сердечнососудистой системы и печени.

Выше уже говорилось о действии кислых туманов, раздражающем слизистые оболочки, глаза и кожу. В некоторых случаях аэрозоль может оказывать на человека и психологическое действие: неприятные ощущения вызывают некоторые запахи, ухудшение видимости, загрязнение одежды смолистыми или сажистыми аэрозолями. Устра­нение ущерба, наносимого аэрозолями, иногда требует значительных затрат.

Тяжелые металлы. Промышленные дымы содержат не только сажу, но и множество других вредных веществ. Производство черных металлов сопровождается не только выбросами сернистого газа и окиси железа, но и таких ядовитых веществ, как сурьма, свинец, мышьяк, пары ртути. В еще больших количествах ядовитые тяжелые металлы поступают в атмосферу из предприятий цветной металлургии. Они составляют половину источников поступления в атмосферу меди и цинка. Сжигание топлива дает 85 процентов выбросов в атмосферу ванадия, 98 — кобальта, 80 — сурьмы, 77 — никеля, 50 процентов селена. С выхлопами автомобилей выбрасывается 250—300 тысяч тонн свинца, который с 1924 года используется в примеси к бензину (в виде тетраэтилсвинца) как антидетонатор. Уже в 1940 году его содержание в образцах материкового льда Гренландии превысило допустимую норму в 175 раз, а в 1966 году норма была превышена в 500 раз!

Больше всего это отношение у свинца: 17,5: его выбрасывается в атмосферу много больше Других металлов и в абсолютном выражении — около трети миллиона тонн в год. Затем идут четыре элемента, которые поступают в атмосферу из-за человеческой деятельности вдвое больше, чем от естественных источников: это кадмий, цинк, мышьяк и никель.

Радиоактивность. Что бы ни говорилось об якобы обеспеченной экологической чистоте ядерной энергетики, возможность загрязнения окружающей среды существует практически на всех этапах производства как ядерной энергии, так и ядерного оружия, причем, сейчас мы говорим о контролируемых технологических процессах, хотя наибольший ущерб могут причинить аварии на предприятиях атомной промышленности. Правда, вероятность таких аварий, по расчетам специалистов, мала. Вероятность крупной аварии с повреждением противоаварийной оболочки реактора в 1975 году была оценена специалистами США как один раз за миллион лет. Однако последствия таких аварий могут быть настолько ужасными, что даже эта малая вероятность не может успокоить общественность всех стран. И это доказала самая большая за историю атомной энергетики катастрофа на Чернобыльской АЭС.

Естественная радиоактивность, интенсивность которой в специфических, выработанных физиками единицах, оценивается в 10—20 микрорентген в час, создается в атмосфере двумя источниками. Во-первых, это выделение радиоактивных газов из минералов земной коры. Таково происхождение газа радон-222, который имеет период полураспада в 3,8 суток, и совсем уже короткоживущеготорона, он же радон-220: период его полураспада 54 секунды. Во-вторых, это воздействие космических лучей на атмосферные газы, приводящее к образованию радиоактивных изотопов — трития (водород-З),углерода-14, бериллия-7 и некоторых других.

Рентген (Р)это количество рентгеновского, или гамма-излучения, которое путем ионизации соз­дает в воздухе некоторый определенный электрический заряд (2,58-10-4 кулонов на килограмм). Употребляется также единица рад — это доза радиации, равная энергии 10 мДж, поглощенной килограммом облученного вещества. Используется и биологический эквивалент рентгена (бэр); он равен дозе ионизирующего излучения, дающей такой же биологический эффект, что и рентгеновское излучение в один рентген. Отношение между бэром и радом для рентгеновского и гамма-излучения и электронов равно единице, для медленных нейтронов — трем, для альфа-частиц, быстрых нейтронов и протонов — десяти, для осколков деления урана — двадцати. Это отношение характеризует относительную биологическую эффективность соответствующего вида излучения.

Уже при добыче сырья на урановых или ториевых шахтах, как и при добыче обычной руды, образуется много пыли, но эта пыль радиоактивна. Она и выделяющиеся радиоактивные газы могут оказаться в атмосфере при вентилировании шахт. На обогатительных фабриках урановая руда дробится и распыляется, и в воздух может попадать не только радиоактивная пыль, но и ядовитые вещества: ванадий, мышьяк, селен и др. Далее концентрат урановой руды растворяют, при этом в атмосферу могут выделяться радиоактивные пары, или обрабатывают фтором с образованием и возгонкой шестифтористого урана. В дальнейшем это радиоактивное и крайне ядовитое вещество прогоняется по длинным трубам с фильтрами (метод газовой диффузии) или центрифугируется для отделения ядерного топлива — урана-235. Естественно, что вероятность просачивания ядовитого и радиоактивного шестифтористого урана через многочисленные соединения труб при всем этом довольно велика. Изготовление топливных элементов для атомных электростанций, включающее механическую и тепловую обработку ядерного топлива, осуществляется в герметических помещениях с помощью дистанционно управляемых манипуляторов. Тем не менее, вероятность попадания радиоактивности в окружающую среду имеется и здесь.