Смекни!
smekni.com

Технологии подготовки воды (стр. 5 из 6)

В процессе тестирования проверяется соответствие заявленных технических параметров оборудования при минимальном, среднем и максимальном расходах воды, в условиях снижения мощности УФ-ламп и снижения коэффициента пропускания воды в рамках границ, указанных производителем.

Для проведения испытаний производитель оборудования представляет зависимость дозы облучения от расхода и коэффициента пропускания воды и диапазон допустимых условий эксплуатации, при которых будет обеспечиваться заданная доза облучения. Также производитель представляет данные о снижении мощности УФ-ламп к концу срока службы.

Испытания проводятся в проточном режиме эксплуатации, в процессе которого на установку УФ-обеззараживания подается вода, зараженная тест-микроорганизмом в концентрации порядка 106 - 107 КОЕ/л. В качестве тест-микроорганизма используются споры бактерий Bacillus subtilis. Кривая инактивации спор B. subtilis позволяет производить количественное определение дозы облучения эквивалентной снижению концентрации спор в диапазоне от 20 до 60 мДж/см2.

Определение дозы облучения производится калибровочной кривой чувствительности микроорганизмов, полученной в лабораторных условиях идеальной модели УФ-системы.

Процедура определения дозы облучения биодозиметрией может быть использована как для сточной, так и для питьевой воды. Однако в случае обеззараживания питьевой воды аттестации УФ-систем уделяется особое внимание. При обеззараживании сточных вод доза облучения по степени инактивации микроорганизмов может быть определена в любой момент, так как на УФ-обеззараживание постоянно поступает вода, содержащая высокие концентрации микроорганизмов, которые после УФ-обеззараживания не должны превышать установленного нормами уровня. Снижение дозы облучения на станции УФ-обеззараживания сточных вод будет заметно по снижению эффективности обеззараживания.

Аттестация УФ-систем на соответствие дозы облучения является обязательной процедурой для оборудования, применяемого для обеззараживания питьевой воды в странах Европейского союза и США. В России практика аттестации УФ-систем не используется. Тем не менее заказчик должен учитывать, что наличие у производителя оборудования аттестации на соответствие дозы облучения является объективным подтверждением надежности УФ-системы. В России применение УФ-оборудования регламентировано и рекомендовано Министерством природных ресурсов РФ, Главгосэкспертизой России, НТС Госстроя России, Российской ассоциацией водоснабжения и водоотведения, НИИ гигиены им. Ф. Ф. Эрисмана, территориальными органами соответствующих федеральных служб и ГЦСЭН.

НПО "ЛИТ" также выпускает УФ-оборудование для обеззараживания воздуха и поверхности: облучатели открытого типа, рециркуляторы воздуха закрытого типа, бактерицидные УФ-модули для систем вентиляции и кондиционирования и др. Они эффективно применяются в промышленности, медицинских, образовательных, спортивных и общественно-культурных учреждениях и т. п.


5. Основы процессов и классификация методов умягчения воды

Устранение из воды или снижение содержания солей жесткости называется ее умягчением. Воду умягчают для технологических нужд целого ряда производств (текстильного, искусственного волокна, химического, бумажного, производства пластмасс и др.), где необходима вода жесткостью не более 0,01 мг-экв/л. Умягчение воды требуется при подготовке питательной воды для котельных установок, для банно-прачечного производства. Известны три основных способа умягчения воды: реагентный, катионитовый и термический. При реагентном способе в качестве реагентов могут быть применены известь либо совместно известь и кальцинированная сода, едкий натр и др. В первом случае способ умягчения воды называют известкованием, во втором - известково-содовым, в третьем - едконатровым способом. Катионирование - фльтрование воды через слой катионита, сопровождающееся ионным обменом. Термический способ устранения жесткости основан на уменьшении растворимости углекислоты при нагревании воды и нарушении углекислотного равновесия. Этот способ применяют для умягчения вод, содержащих преимущественно бикарбонатную и карбонатную жесткость и используемых для питания котлов низкого давления и на предприятиях коммунального хозяйства.

Термическое умягчение воды. При нагревании воды растворенная в ней равновесная свободная углекислота выделяется, что ведет к нарушению углекислотного равновесия и к распаду содержащихся в ней двууглекислых солей кальция и магния, теряющих половину связанной углекислоты.

Реакция образования осадка гидроксида магния протекает очень медленно, ускорить ее можно, ведя процесс при температуре кипячения воды. Термическое умягчение воды осуществляют в водоумягчителях-кипятильниках. Однако этот метод устранения жесткости в настоящее время самостоятельного значения не имеет. При реагентном умягчении воды для питания котлов термический метод умягчения используют для предварительного умягчения с целью снижения расхода реагентов.

Реагентов умягчение воды. Реагентное умягчение воды состоит в том, что при введении в воду специальных реагентов катионы кальция и магния, растворенные в ней, переходят в практически нерастворимые соединения, выводимые в осадок. В зависимости от вида применяемых реагентов различают следующие методы умягчения: известковый, известково-содовый, едконатровый, фосфатный и бариевый. Известковый метод используют для частичного устранения карбонатной жесткости воды (для снижения ее щелочности). Самостоятельного распространения этот метод не получил, обычно его сочетают с содовым или катионитовым методом. Введение в воду гашеной извести в виде известкового молока или раствора, в первую очередь, вызывает нейтрализацию свободной углекислоты с образованием малорастворимого карбоната кальция, выпадающего в осадок.

Добавление извести в количестве большем, чем необходимо для нейтрализации свободной углекислоты, вызывает распад бикарбонатов с выделением из воды карбоната кальция.

Дальнейшее введение в воду извести приводит к гидролизу магниевых солей и образованию малорастворимого гидроксида магния Mg (ОН)2, который при рН>10,2- 10,3 декантирует.

Известкованием устраняют из воды и некарбонатную магниевую жесткость при условии, что рН воды будет не ниже 10,2-10,3.

Приведенные уравнения показывают, что магниевая жесткость устраняется, но величина общей жесткости остается неизменной, так как магниевая жесткость заменяется кальциевой, некарбонатной. Следовательно, известкованием воды может быть в той или иной мере устранена карбонатная и магниевая жесткость воды, но не может быть снижена некарбонатная жесткость. Для устранения некарбонатной жесткости в воду кроме извести вводят соду.

После добавления в воду извести и соды мгновенно происходит образование коллоидных соединений карбоната кальция и гидроксида магния. Переход же от коллоидного состояния в грубодисперсное, при котором СаС03 и Mg(ОН)2 выпадают в осадок, занимает длительное время, измеряемое часами.

Для ликвидации тормозящего действия органических примесей на процесс умягчения воды кроме извести и соды в нее вводят коагулянт, достигая при этом удаления из воды органических соединений и вызывая укрупнение мельчайших кристаллов, карбоната кальция и гидроксида магния, что обеспечивает более высокий эффект работы тонкослойных отстойников или осветлителей со взвешенным слоем. В первом случае коагулянт следует вводить до введения извести и соды, во втором - после. Если применение коагулянта вызвано как необходимостью укрупнения коллоидных соединений карбоната кальция и гидроксида магния, так и необходимостью удаления органических соединений, замедляющих процесс водоумягчения, то коагулянт вводят в воду дважды: первый раз - до введения извести, а второй - после.


Задача

При крашении одежды в темно-синий цвет ее последовательно выдерживают в двух ваннах с раствором красителя, состав которых в граммах слудующий (из расчета на 8 кг одежды):

Краситель свежая ванна вторая ванна

Прямой синий

Поваренная соль

Кальцинированная сода

Рассчитайте массовую концентрацию компонентов каждой ванны в отдельности по отношению в одежде и укажите сколько каждого компонента в совокупности по двум ваннам потребуется для крашения 1 тонны одежды.

Решение

Найдем содержание компонентов свежей ванны по отношению к одежде:

А) Краситель бордо

8000 г – 100 %

375 г – х

х = 4,687 %

б) Поваренная соль

8000 г – 100 %

500 г – х

х = 6,25 %

в) Кальцинированная сода

8000 г – 100 %

50 г – х

х = 0,625 %

Рассчитаем также для второй ванны:

А) Краситель бордо

8000 г – 100 %

265 г – х

х = 3,31 %

б) Поваренная соль

8000 г – 100 %

300 г – х

х = 3,75 %

в) Кальцинированная сода

8000 г – 100 %

25 г – х

х = 0,312 %

2. Найдем сколько каждого компонента в совокупности по каждой ванне потребуется на 1000 кг одежды:

А) Краситель бордо 4,687 + 3,31 = 7,99 %

1000 кг – 100 %

х кг – 7,99 %

х = 79,9 кг

б) Поваренная соль 6,250 + 3,750 = 10 %

1000 кг – 100 %

х кг – 10 %

х = 100 кг

в) Кальцинированная сода 0,625 + 0,312 = 0,781 %

1000 кг – 100 %

х кг – 0,937 %

х = 9,37 кг

Ответ: для крашения 1000 кг одежды необходимо красителя бордо – 79,9 кг, поваренной соли – 100 кг, кальцинированной соды – 9,37 кг.


Выводы

Проблема очистки воды, используемой для бытовых и промышленных целей, от различных загрязнений имеет огромное значение. С одной стороны, постоянно повышаются требования к качеству воды, особенно в промышленности и энергетике, а с другой - происходит прогрессирующее загрязнение водных источников, которое затрудняет работу существующих систем очистки.