Смекни!
smekni.com

Термодинамика необратимых процессов и проблем экологии (стр. 1 из 4)

Федеральное агентство образования

ПГПУ им. Белинского

Физико-математический факультет

Кафедра общей физики

Курсовая работа

"Термодинамика необратимых процессов и проблем экологии"

Подготовила: студентка гр. М-42

Отпущенникова Людмила

Проверила: доцент Ляпина Т.В.

Пенза 2007

Содержание

Введение

1. Основные понятия

2. Первое начало термодинамики

3. Энтропия и вероятность

4. Энтропия и приведенная теплота

5. Второе начало термодинамики

6. Обратимые и необратимые процессы

7. О тепловой смерти мира

8. Термодинамическая шкала температур. Третье начало термодинамики. Недостижимость абсолютного нуля

9. Необходимые и достаточные условия существования систем

10. Энтропия Земли

11. Энтропия и критерий технического прогресса

Библиография

Введение

Термодинамика изучает закономерности теплового движения в равновесных системах и при переходе систем в равновесие (классическая или равновесная, термодинамическая), а так же обобщает эти закономерности на неравновесные системы равновесная термодинамическая или термодинамика необратимых процессов.

Термодинамика необратимых процессов является сравнительно молодым и интенсивно развивающимся разделом термодинамической физики. Она возникла в результате обобщения классической термодинамики на область малых отклонений системы от равновесия и в дальнейшем была распространена на построение теории процессов в сильно неравновесных системах.

Прежде чем перейти к изложению основных законов и методов термодинамики и изучения свойств различных систем, раскроем содержание главных термодинамических понятий.

1. Основные понятия

Макроскопическая система - всякий материальный объект, всякое тело, состоящее из большого числа частиц.

Равновесное состояние системы - это такое состояние, когда в системе не только все параметры постоянны во времени, и нет никаких стационарных потоков за счет действия каких-либо внешних источников.

Изолированная или замкнутая система - система, которая не обменивается с окружающими телами ни энергией, ни веществом.

Открытая система - система, которая обменивается с окружающими телами энергией и веществом.

Закрытая система - система, не обменивающаяся с другими телами веществом, но обменивающаяся энергией.

Энергия системы - энергия непрерывно движущихся и взаимодействующих частиц.

Полная энергия системы разделяется на внешнюю и внутреннюю.

Часть энергии, состоящая из энергии движения системы как целого и потенциальной энергии системы в поле внешних сил, называется внешней энергией. Остальная часть энергии системы называется внутренней энергией.

Количество теплоты - энергия, переданная системе без изменения её внешних параметров.

Процесс называется равновесным или квазистатическим, если все параметры системы изменяются физически бесконечно медленно, так что система все время находится в равновесных состояниях.

Время релаксации - промежуток времени, в течении которого система возвращается в состояние равновесия.

Если изменение какого-либо параметра a происходит за время t, меньшее или равное времени релаксации τ (t≤τ), так что

, то такой процесс называется неравновесным или нестатическим.

Процесс перехода системы из состояния 1 в 2 называется обратимым, если возвращение этой системы в исходное состояние из 2 в 1 можно осуществить без каких бы то ни было изменений в окружающих внешних телах.

Процесс же перехода системы из состояния 1 в 2 называется необратимым, если обратный переход системы из 2 в 1 нельзя осуществить без изменений в окружающих телах.

2. Первое начало термодинамики

Термодинамика - дедуктивная наука. Её основные успехи могут быть охарактеризованы тем, что она позволяет получить множество различных соотношений межу величинами, определяющими состояние тел, опираясь на весьма общие электрические законы - начала-термодинамики.

Обсудим содержание этих основных законов и соответствующим им основных уравнений термодинамики.

Одной из аксиом термодинамики является первое началотермодинамики, утверждающее следующее: внутренняя энергия термодинамической системы является функцией состояния, изменяющейся только при взаимодействии с окружением. Изменение внутренней энергии связано с работой и количеством теплоты уравнением первого начала термодинамики:

δQ= dE+ δА. (1)

Выражение (1) посуществу является законом сохранения энергии, описывающим взаимодействие макросистемы с окружением.

Первое начало термодинамики, устанавливая связь между dE, δА и δQ, тем самым позволяет свести измерение dEк измерению макроскопических величин, таких как работа или количество теплоты.

С другой стороны, первое начало термодинамики позволяет сделать определенный вывод о той механической работе, которую можно получить в том или ином процессе, что представляет большой практический интерес. Исторически установление первого начала термодинамики (закона сохранения энергии) было связано как раз с неудачами при попытках сконструировать машину, которая совершала бы работу, не затрачивая при этом никакой энергии и не получая теплоты извне. В термодинамике такую неосуществимую машину называют вечным двигателем первого рода.

Для периодически действующей машины dE= 0; поэтому для периодического производства ею работы в силу закона сохранения энергии необходимо или подводить количество теплоты δQили использовать работу δА других источников энергии. Невозможно построить вечный двигатель, который производил бы большую работу, чем количество поглощаемой им извне энергии. Последнее утверждение можно рассматривать как одну из формулировок первого начала термодинамики. В дальнейшем для обозначения элементарного изменения внутренней энергии dE, элементарной работы δА и количества теплоты δQбудем использовать только один символ: d.

3. Энтропия и вероятность

Понять энтропию - это знать ее происхождение, знать связь ее с другими понятиями, уметь применять энтропию на практике.

Чем больше связей знают читатели между энтропией и другими понятиями, тем лучше они усваивают, что такое энтропия.

В приборе Гей-Люссака в одном шаре находится газ (при малой его плотности). Другой шар эвакуирован. Открывают кран на трубке, соединяющей оба шара. Результат опыта известен: газ равномерно заполняет оба шара. Температура всего газа та же, что и до расширения. При самопроизвольном изотермическом расширении газа увеличивается его энтропия (процесс адиабатический, и энтропия источников теплоты не изменяется). Самопроизвольное сжатие газа в приборе Гей-Люссака до прежнего объема исключено: энтропия уменьшилась бы.

Газ состоит из молекул (некоторые газы состоят из атомов). В газе малой плотности одна молекула воздействует на другую только в короткие моменты столкновений между молекулами. Большую же часть времени молекула свободно двигается по объему, предоставленному всему газу.

Предположим, что физик может отличить одну молекулу от других. Физика спрашивают, в каком шаре находится выбранная молекула, подчеркнутая красным, как говорил Эйнштейн. (Объемы шаров, чтобы упростить рассуждения, равны) Физик ответит: до наблюдения не знаю. Он сошлется на то, что на выбранную молекулу (как и на все остальные) ничего не воздействует. Выбранная молекула (как и все остальные) никак не предпочитает один шар другому. Объемы шаров равны. Поэтому и физик не может предпочесть один шар другому. На техническом языке, вероятность нахождения выбранной молекулы в любом из шаров равна половине. Сумма вероятностей равна единице (половина плюс половина), равна достоверности. В каком-нибудь из двух шаров выбранная молекула обязательно находится.

Физику дальше ставят как будто совсем неразрешимый вопрос: в каком из шаров находятся все молекулы газа? На вопрос, где находится одна выбранная молекула, физик не мог ответить. Где же ему ответить на второй вопрос?! Ведь при О °С и 1 атм в 1 см3 газа находится 2,7x1019 молекул. [Для сопоставления: пять миллиардов лет (возраст Земли) - 1,6х1017 секунд.] Физик, однако, с полной уверенностью ответит: ни в одном из шаров не содержатся все молекулы газа. Молекулы газа равномерно распределены между обоими шарами. Во всяком случае, отклонение от равномерного распределения при значительном объеме шаров, значит, и при большом числе молекул крайне мало, и этим отклонением можно спокойно пренебречь.

Откуда такая уверенность? Из подсчета вероятностей. Именно потому, что для каждой молекулы вероятность находиться в том или другом шаре равна половине, все молекулы не могут находиться в одном только шаре. Вероятность такого случая тем меньше, чем больше число молекул. При том числе молекул, с каким обычно имеют дело в термодинамике, вероятность скопления всех молекул в одном только шаре чрезвычайно мала. Выдающийся французский математик Э. Борель (1871-1956) писал: "Я пришел к выводу, что не следует бояться применить слово достоверность для обозначения вероятности, которая отличается от единицы на достаточно малую величину". Статистический закон для большого числа молекул пробил себе дорогу через случайности для отдельной молекулы.

Приведенный пример свидетельствует, что существует связь между возрастанием энтропии в опыте Гей-Люссака и вероятностью распределения газа между обоими шарами. Обобщая, можно сказать: при самопроизвольном процессе система переходит из менее вероятного состояния в более вероятное.

4. Энтропия и приведенная теплота

Первое начало термодинамики позволяет определить, возможен ли с энергетической точки зрения тот или иной процесс в замкнутой системе. Но оно ничего не говорит о возможных направлениях процессов (в частности самопроизвольных). Так, например, первый закон не запрещает самопроизвольного перехода теплоты от холодного тела к горячему, либо концентрирования газа в малой части сосуда и снижения давления в остальной части сосуда. Но, как известно, в природе такие процессы не наблюдаются.