В воздухе рабочей зоны ПДКр.з. =0,3 мг/м3
В атмосферном воздухе ПДКс.с =0,01 мг/м3
В воде водоисточников ПДКв =0,1 мг/м3
Содержание свободных цианидов в сточных водах не более 0,1 мг/м3; содержание общих цианидов при поступлении на полную биологическую очистку - не более 1,0 мг/м3; при сбросе в водоемы - 0,5 мг/л. Допустимое содержание в сточных водах, используемых для орошения сельскохозяйственных земель, не нарушающее почвенных процессов и не оказывающее токсического действия на растения, выросшие на орошаемых землях, при потреблении этих растений - на животных и человека, рекомендуется на уровне 10 мг/л.
Способы обезвреживания
Обезвреживание тары
Тара, отходы или предметы, загрязненные цианистыми солями погружают с обезвреживающим составом (смесь из 100 % - ных растворов железного купороса и гашенной извести, раствор железного купороса берется в двойном количестве сравнительно с раствором извести ) и тщательно перемешивают в течении 30 минут, затем оставляют стоять еще 3 - 4 часа для полного обезвреживания тары. Обезвреживающий раствор, после получения анализа на отсутствие циана, влить в циановые стоки.
Обезвреживание одежды
Спецодежду необходимо стирать в механической прачечной с хлорной известью или хлорамином, или в малом растворе с марганцовкой. При этом обезвреживается циан. Воду вылить в хозяйственно - бытовую канализацию.
Цианиды (калия, меди, натрия).
Основные симптомы отравления. Раздражение в носу, горле и трахее. Затрудненное дыхание, стеснения в груди. Общая слабость. Сладкий вкус во рту, особенно замечаемый при курении.
Первая помощь при отравлениях. В случае отравления пострадавшему в первой же минуте дать вдыхать 8 капель анилнитрита на ватке, вдыхание повторить через каждые 2 - 3 минуты в течение 15 - 30 секунд. Срочно вынести на свежий воздух. При ослабленном дыхании необходимо сделать искусственное дыхание с одновременным вдыханием кислорода [4].
Ионообменная очистка. При ионообменной обработке сточных вод, содержащих органические примеси, наряду с ионным обменом протекают процессы хемосорбции и физической адсорбции органических веществ ионитами. Диффузионные затруднения при обмене крупных органических ионов обусловливают целесообразность применения "малосшитых" ионообменных смол. Значительное увеличение в объеме при набухании "малосшитых" смол дает возможность диффундировать в них крупным органическим ионам.
При ионообменном поглощении органических ионов скорость достижения равновесия обычно значительно меньше, чем при обмене неорганических ионов.
Присутствие многовалентных катионов при поглощении органических оснований или многовалентных анионов при поглощении органических кислот приводит к вытеснению органических веществ в раствор и резкому снижению емкости ионитов.[6]
На сорбционную емкость ионитов по органическим соединениям отрицательное влияние могут оказывать другие примеси, растворенные в сточной воде и способные блокировать ионогенные группы смол.
Регенерация ионитов от органических соединений более затруднительна, чем от минеральных солей. Регенерирующий агент выбирается с учетом свойств выделяемого органического вещества и возможности дальнейшего использования регенерационных растворов. Например, для извлечения фенолов и анилина из ионитов используют водные растворы щелочей и кислот, в то время как ПАВ не вытесняются из смол даже концентрированными растворами неорганических щелочей, кислот или солей. Для удаления ПАВ предложено использовать органические растворители или их смеси с небольшими количествами водных растворов электролитов.[6]
Примеры применения метода ионного обмена.
Метод ионного обмена может использоваться для очистки сточных вод многих химических производств: электрохимических (от ионов тяжелых металлов, цианидов и др.), синтетических волокон (от ионов цинка и др.), азотных удобрений (от аммиака, меди и др.), коксохимических (от тиосульфатов, роданидов и др.), искусственных и естественных изотопов (от радиоактивных веществ) и т.д.
Очистка сточных вод, содержащих соли хромовой кислоты, возможна на сильноосновном анионите. Анионит не изменяет своих свойств (не окисляется) в течение длительного времени при концентрации СrО3 до 1200мг/л. Для анионита, содержащего 6% дивинилбензола, при рН=1,8-6 динамическая обменная емкость составляет 11,5-12% от массы сухой смолы.
Регенерируют анионит 10-15% растворами NаОН. Однако десорбция хроматов протекает эффективнее, если анионит предварительно переводится в хлоридную форму. При регенерации анионита раствором, содержащим 2% NаОН и 6% NаСI, десорбируется 89-99% хроматов (от количества сорбированных). При двухкратном использовании регенерирующих растворов концентрация Сr6+ в элюате составляет 48-54г/л, при трехкратном использовании - 73-79г/л [8].
Полученный при регенерации раствор, содержащий Nа2СrО4, NаОН и NaCI, пригоден для получения пассивирующих растворов. Методом Н - катионирования хромат натрия может быть переведен в хромовую кислоту.
Ионообменное извлечение металлов из сточных вод позволяет рекуперировать ценные вещества с высокой степенью извлечения. Ионный обмен - это процесс взаимодействия раствора с твердой фазой, обладающей свойствами обменивать ионы, содержащиеся в ней, на ионы, присутствующие в растворе. Вещества, составляющие эту твердую фазу, называются ионитами. Метод ионного обмена основан на применении катионитов и анионитов, сорбирующих из обрабатываемых сточных вод катионы и анионы растворенных солей. В процессе фильтрования обменные катионы и анионы заменяются катионами и анионами, извлекаемыми из сточных вод. Это приводит к истощению обменной способности материалов и необходимости их регенерации [8].
Наибольшее практическое значение для очистки сточных вод приобрели синтетические ионообменные смолы - высокомолекулярные соединения, углеводородные радикалы которых образуют пространственную сетку с фиксированными на ней ионообменными функциональными группами. Пространственная углеводородная сетка называется матрицей, а обменивающиеся ионы - противоионами. Каждый противоион соединен с противоположно заряженными ионами, называемыми анкерными. Реакция ионного обмена протекает следующим образом:
RSO3H + NaCL = RSO3Na + HCL,
при контакте с катионитом, где R - матрица, Н - противоион, SO3 - анкерный ион;
ROH + NaCL = RCL + NaOH,
при контакте с анионитом.
Для извлечения из сточных вод гальванопроизводства катионов трехвалентного хрома применяют Н-катиониты, хромат-ионы CrO32 - и бихромат-ионы Cr2O72 - извлекают на анионитах АВ-17, АН-18П, АН-25, АМ-п. Емкость анионитов по хрому не зависит от величины рН в пределах от 1 до 6 и значительно снижается с увеличением рН больше 6. При концентрации шестивалентного хрома в растворе от 800 до 1400 экв/л обменная емкость анионита АВ-17 составляет 270 - 376 моль*экв/м3.
Регенерацию сильноосновных анионитов проводят 8 - 10 %-ным раствором едкого натра. Элюаты, содержащие 40 - 50 г/л шестивалентного хрома, могут быть направлены на производство монохромата натрия, а очищенная вода - использоваться повторно.
Фирмой InovanUmwelttechnikGmbH & CoKG разработана блочно-модульная установка системы REMA, предназначенная для очистки производственных сточных вод от тяжелых металлов. Одинарный блок представляет собой ионообменную колонку, в которой вертикально друг под другом установлены 4 сменные кассеты. В процессе очистки сточные воды последовательно пропускают через эти кассеты снизу вверх. Степень загрязненности ионообменной смолы определяют с помощью индикаторов .
На заводе "Почвомаш" (Киров) внедрен процесс очистки промстоков гальванических производств от ионов хрома волокнистыми материалами. Для сорбции анионов хрома используют материал ВИОН АС-1, имеющий в своем составе сильноосновные винилпиридиниевые группы с СОЕ 1.1 - 1.2 мг*экв/г. Изготовлены две сорбционных колонны из коррозионно-стойкой стали объемом 50 л каждая. Сорбция хрома зависит от его концентрации в исходном растворе. Так, если концентрация составляет до 10 мг/л, то в фильтрате его не обнаруживают. Однако при концентрации аниона хрома 75 мг/л и выше содержание его в фильтрате 0.04 - 0.01 мг/л, что вполне допустимо при замкнутом цикле. Влияние исходной концентрации раствора хрома на его содержание в фильтрате обусловлено высоким ионным радиусом Cr2O72-,вызывающим стерические затруднения при сорбции на волокнистом хемосорбенте. При высоком содержании хрома следует уменьшить скорость подачи раствора на сорбционную колонну. В этом случае возрастает степень очистки. При достижении насыщения сорбционных колонн их снимают со стенда и транспортируют в отделение гальванохимической переработки для регенерации хемосорбционного материала и утилизации элюата. Регенерацию ВИОН АС-1 проводят раствором Na2CO3 . При этом в каждую колонну заливают по 50 л раствора и оставляют его на 3 часа. Последующая операция заключается в промывке фильтра водой [20].
Было проведено исследование 8 волокнистых сорбентов, применяемых для очистки сточных вод от ионов тяжелых металлов (Ag, Hg, Cr, Cd, Fe).Установлено, что волокнистые сорбенты ПАН-ПЭА, ПАН-ТТО-МКХК и угольное волокно эффективно очищают сточную воду от ионов тяжелых металлов. Они легко регенерируются путем обработки кислотами и могут многократно использоваться для очистки. Из раствора, полученного после регенерации волокон, можно выделять металлы и использовать их повторно .
Синтезированы ионообменные материалы на основе отходов швейного и трикотажного производства, содержащие полиэфирное, полиакрилонитрильное волокно. Установлено, что синтезированные ионообменные волокна проявляют селективные ионообменные свойства .