Смекни!
smekni.com

Переработка твёрдых отходов (стр. 2 из 3)

Гранулирование порошков прессованием проводят в валковых и таблеточных машинах, червячных и ленточных прессах и некоторых других механизмах с получением агломератов различной формы и размеров.

Валковые грануляторы снабжают прессующими элементами различного профиля, что позволяет получать спрессованный материал в виде отдельных кусков (обычно с поперечником до 30 мм), прутков, плиток, полос. Эти механизмы часто совмещают с дробилками, обеспечивающими получение из спрессованных полупродуктов гранул заданных размеров.

В технологии производства из промышленных отходов некоторых адсорбентов, катализаторов, витаминных, лечебных и ряда других препаратов и изделий порошковые материалы гранулируют с использованием таблеточных машин различных типов, принцип действия большинства которых основан на прессовании дозируемых в матричные каналы порошков пуансонами. Приготовляемые таблетки характеризуются разнообразной формой (цилиндры, сферы, диски, кольца и т. п.) с поперечником 6-12 мм.

Отдельную группу грануляторов представляют аппараты гранулирования порошков в дисперсных потоках. Процесс в них основан на столкновениях частиц порошка или порошка и жидкой фазы в турбулизованном потоке циркулирующего в аппарате или проходящего через него воздуха или газа.

Способность гранулируемых материалов к уплотнению и формованию характеризуют значениями коэффициентов их гранулируемости К1 и К2:

К1=(g/g0)/pпл, К2=σ/pпл, (3)

где g и g0 - текущая и исходная плотность гранулируемого материала т/м3; σ – предел прочности гранул при сжатии, Па; pпл – давление уплотнения, соответствующее началу упруго-пластической деформации, Па.

Величины К1 и К2 позволяют обоснованно рекомендовать соответствующий метод гранулирования для данного материала: чем больше значения этих коэффициентов, тем меньшими усилиями обеспечивается заданная степень уплотнения материала.

Методы брикетирования находят широкое применение в практике утилизации твердых отходов в качестве подготовительных операций (с целью придания отходам компактности, обеспечивающей лучшие условия транспортирования, хранения, а часто и саму возможность переработки) и самостоятельных операций (изготовление товарных продуктов). На процесс брикетирования дисперсных материалов существенное влияние оказывают состав, влажность и крупность материала, температура, удельное давление и продолжительность прессования. Необходимое удельное давление прессования обычно находится в обратной зависимости от влажности материала. Перед брикетированием материал обычно подвергают грохочению, дроблению (при необходимости), сушке, охлаждению и другим подготовительным операциям. В практике брикетирования используют различные прессовые механизмы. При брикетировании дисперсных материалов наибольшее распространение получили штемпельные, вальцовые и кольцевые прессы различных конструкций.

Метод высокотемпературной агломерации используют при переработке пылей, окалины, шламов и мелочи рудного сырья в металлургических производствах. Для проведения агломерации на основе таких ВМР приготовляют шихту, включающую твердое топливо (коксовая мелочь 6-7% по массе), и другие компоненты (концентрат, руда, флюсы). Воспламенение и нагрев шихты обеспечивают просачиванием через ее слой продуктов сжигания газообразного или жидкого топлива и воздуха. Процесс спекания минеральных компонентов шихты идет при горении ее твердого топлива (1100-1600 ˚С). Агломерационные газы удаляют.

Спеченный агломерат дробят по крупности 100-150 мм в валковых зубчатых дробилках, продукт дробления подвергают грохочению и последующему охлаждению. Просев грохочения – фракцию – 8 мм, выход которой составляет 30-35%, возвращают на агломерацию.

При утилизации и переработке твердых отходов используют различные методы термической обработки как исходных твердых материалов, так и получаемых на их основе продуктов. Эти методы включают различные приемы пиролиза (например, отходов пластмасс, древесины, резиновых технических изделий, шламов нефтепереработки), переплава (например, отвальных металлургических шлаков, отходов термопластов, металлолома), обжига (например, некоторых шлаков цветной металлургии, ряда железосодержащих шламов и пылей) и огневого обезвреживания (сжигания) многих видов твердых отходов на органической основе.

Метод смешения порошкообразных и пастообразных материалов широко используют в практике переработки твердых отходов для усреднения состава дисперсных отходов, приготовления на их основе многокомпонентных смесей шихтовых материалов и получения различных масс, обеспечивающих возможность переработки ВМР в товарные продукты.

3 ОБОГАЩЕНИЕ

В практике рекуперации твердых отходов промышленности используют различные методы обогащения перерабатываемых материалов, подразделяемые на гравитационные, магнитные, электрические, флотационные и специальные.

3.1 Гравитационные методы

Гравитационные методы обогащения основаны на различии в скорости падения в жидкой (воздушной) среде частиц различного размера и плотности. Они объединяют обогащение отсадкой, в тяжелых суспензиях, в перемещающихся по наклонным поверхностям потоках, а также промывку.

Отсадка представляет собой процесс разделения минеральных зерен по плотности под действием переменных по направлению вертикальных струй воды (воздуха), проходящих через решето отсадочной машины. Отсадке обычно подвергают предварительно обесшламленные материалы оптимальной крупности (0,5-100 мм для нерудных и 0,2-40 мм для рудных материалов). При отсадке крупного материала находящийся на решете слой толщиной в 5-10 диаметров наибольших частиц в подаваемом на переработку материале (питании) называют постелью. При отсадке мелкого материала ( до 3-5 мм) на решете укладывают искусственную постель из крупных тяжелых частиц материала, размер которых в 3-4 раза превышает размер наиболее крупных частиц питания. В процессе отсадки материал расслаивается: в нижнем слое концентрируются тяжелые частицы, в самом верхнем – легкие мелкие. Получаемые слои разгружают раздельно.

Отсадочные машины различаются способом создания пульсаций (движением диафрагмы, поршня, решета, пульсирующей подачей сжатого воздуха), типоразмерами, конструктивными особенностями, числом фракций выделяемых продуктов. Их производительность может быть определена по формуле:

Q=3600gсрBHuт, (4)

где gср – средняя насыпная плотность материала постели, т/м3; В – ширина отсадочного отделения, м; uт - средняя скорость продольного перемещения материала в машине, м/с.

Обогащение в тяжелых суспензиях и жидкостях. Этот процесс заключается в разделении материалов по плотности в гравитационном или центробежном поле в суспензии или жидкости, плотность которой является промежуточной между плотностями разделяемых частиц.

Тяжелые суспензии представляют собой взвешенные в воде тонкодисперсные частицы тяжелых минералов или магнитных сплавов – утяжелителей, в качестве которых используют ферросилиций, пирит, пирротин, магнетитовый и гематитовый концентраты и другие материалы крупностью до 0,16 мм. В качестве тяжелых жидкостей используют растворы хлоридов кальция и цинка, тетрахлорида углерода, тетрабромэтана, хлорного олова и других соединений.

Для поддержания устойчивости суспензии в нее добавляют глину (до 3% от массы утяжелителя) или применяют смесь порошков утяжелителей различной плотности.

Наиболее распространенными аппаратами обогащения в тяжелых средах являются барабанные, конусные, колесные и гидроциклонные сепараторы.

Обогащение в потоках на наклонных поверхностях. Эти процессы включают обогащение на концентрационных столах, а также в струйных сепараторах, шлюзах и подшлюзах, в винтовых сепараторах и шлюзах.

Обогащение на концентрационных столах характеризуется разделением минеральных частиц по плотности в тонком слое воды, текущей по наклонной плоской деке стола, совершающей возвратно-поступательные горизонтальные движения перпендикулярно направлению движения воды.

Деки бывают трапециевидной и прямоугольной формы. На части поверхности дек в продольном направлении закрепляют параллельно располагаемые рифли (планки переменной высоты и длины), длина которых увеличивается от верхнего к нижнему краю стола – краю разгрузки легких продуктов. Пульпу разделяемого материала подают в верхний угол поверхности стола (деки). Питание деки смывной водой ведут с ее верхнего края, ниже места ввода пульпы. Частицы разделяемого материала большей плотности оседают в межрифленных пространствах и под действием колебаний наклонной деки продвигаются вдоль рифлей, достигая нерифленой части деки, где образуют веер частиц различной плотности, удаляемых раздельно. Неоседающие частицы меньшей плотности переносятся смывным потоком через рифли; их в виде раздельных продуктов отводят с поверхности концентрационного стола.

Более эффективно разделение предварительно классифицированных материалов. Оптимальное отношение длины деки L к ее ширине S определяется крупностью обогащаемых материалов. Концентрационные столы изготовляют в промышленном, полупромышленном и лабораторном исполнении в одно- и многоярусном вариантах с деками трех видов: песковые с L/S»2,5 для материалов крупностью d>1 мм, мелкопесковые (L/S=1,8; d=0,2-1 мм), шламовые (L/S£1,5; d<0,2 мм).

К основным регулируемым технологическим параметрам обогащения на столах относят число nходов деки стола в минуту и оптимальную длину l (в мм) хода, определяемые по выражениям:

n=250/

, (5)

l=18

, (6)