Смекни!
smekni.com

Очищення води за допомогою озонування (стр. 4 из 5)

Рисунок 4.4 Видалення фенолів і амінів: 1 - вихідна вода; 2 - озонована вода; 3 - вода після вугільного завантаження


Особливу групу вод складають кольорові води. Вода багатьох північних і сибірських річок (Західна Двіна, Сухона, Вичегда, Олена, Алдан і ін.), ряду озер і водосховищ характеризується малим вмістом суспензії і високою кольоровістю - до 100 - 240 град. Крім того, на території Росії є великі запаси підземних вод (Якутія, Ростовська обл., Краснодарський край), які не використовуються для господарсько-питного водопостачання із-за високої кольоровості.

Останніми роками була досліджена технологія очищення вод середньої і високої цвітності і з використанням спільного вживання процесів озонування і фільтрування через активне вугілля як самостійного методу обробки води. Озонування води дозволяє істотно понизити забарвлення природної води; ефективність озонування представлена на рисунку 4.5 Дози озону, потрібні для очищення води, досить високі і складають 15 - 20 мг/л. При цьому цвітність води після озонування знижується до величини 30 - 35 град, а сорбційне очищення зменшує цвітність до нормованих величин.

Рисунок 4.5 Ефективність очищення кольорових вод озонуванням (р. Приморсько-Ахтарськ Краснодарського краю): 1 - цвітність води; 2 – окислюваність


При озонуванні води постійно перевіряли ефективність її знезараження. Проведені бактеріологічні спостереження, зокрема, в м. Рязані підтвердили високу бактерицидну здатність озону: при дозах озону 3 - 4 міліграми/л колі-індекс в озонованій воді не перевищував 3 (при величині колі-індексу в річковій воді - 100000 - 300000), а середнє мікробне число складало 12 - 15 м. т./мл (у річковій воді - від 1400 до 2300 м. т./мл).

Таким чином, представлені вище приклади, показують найбільш характерні випадки позитивного вживання озону і активного вугілля в технології очищення води, які безумовно не охоплюють всього різноманіття варіантів використання окислювально-сорбційного методу очищення і видалення з води всіх забруднень, що зустрічаються в ній. Проте на практиці наголошуються випадки, коли озонування може привести і до погіршення процесу коагуляції. Так, при очищенні річкової води в р. Калтан (Кемеровська обл.) в період весняного паводку, попереднє озонування погіршувало подальші процеси коагуляції і освітлення, в результаті якість очищеної води не відповідала вимогам стандарту.Отримані результати привели до того, що з схеми очищення було виключено первинне озонування і замінено на введення озону перед фільтрувальними спорудами.При озонуванні деяких вод дози озону істотно впливають на подальші процеси очищення, тобто існує досить вузький діапазон їх оптимальних значень, менше якого озонування неефективне, а при великих дозах наголошується поява суспензії у фільтрованій воді і підвищується концентрація залишкового алюмінію. У ряді випадків озонування води може привести до підвищення концентрації деяких хімічних забруднень, наприклад, фенолів, які можуть утворюватися в результаті неповного окислення ароматичних з'єднань, присутніх у воді. Результати досліджень при озонуванні р. Которосль (м. Ярославль) показують, що концентрація фенолів зменшується або збільшується залежно від якості вихідної води і дози озону.

Крім того, відомо, що в процесі озонування води можливе утворення побічних продуктів, з яких найбільш показним є формальдегід. Тому у всіх дослідженнях по озонуванню постійно контролювали концентрацію формальдегіду в оброблюваній воді, величина якої періодично перевищувала ГДК (0,05 міліграм/л). Проте при подальшому сорбційному очищенні на вугільних фільтрах вміст формальдегіду істотно зменшується.

Необхідно також мати на увазі, що використовувати озон як єдиний знезаражувальний реагент неможливо, оскільки він не володіє пролонгуючою бактерицидною дією. Крім того, при озонуванні води багато органічних забруднень піддаються деструкції, в результаті збільшується кількість біорозкладаних з'єднань, у воді підвищується концентрація так званого «асимільованого органічного вуглецю», який легко засвоюється мікроорганізмами, сприяючи їх життєдіяльності.

Крім того, при озонуванні води багато органічних забруднень піддаються деструкції, в результаті збільшується кількість біорозкладаних з'єднань, у воді підвищується концентрація так званого «асимільованого органічного вуглецю», який легко засвоюється мікроорганізмами, сприяючи їх життєдіяльності. Це створює сприятливі умови для повторного бактерійного забруднення очищеної води у водопровідній мережі.

Тому для надійної роботи водопровідних мереж необхідне остаточне знезараження води проводити хлорвмісними реагентами (хлором, гіпохлоритом натрію - електролітичним або хімічним, хлорамінами) дозами, що забезпечують вміст у воді залишкового хлору на рівні 0,3 - 0,5 мг/л, що гарантує повний знезаражувальний ефект.

Таким чином, завданням цього розділу було показати, що у всіх випадках вживання методів озонування і сорбційного очищення води необхідне проведення передпроектних технологічних досліджень.

Ці дослідження зможуть визначити всі позитивні і можливі негативні моменти вживання озону, і лише вони дозволять встановити ефективність озонування і сорбційного очищення, необхідні дози озону, необхідні місця введення озону, вплив озону на основні процеси очищення води і можливість поєднання озонування з подальшим сорбційним очищенням.

5. Застосування технології озонування і сорбційного очищення води на локальних установках

Останніми роками для малих населених місць, санаторіїв, будинків відпочинку, сільських селищ, гарнізонів і військових містечок знайшли широке вживання установки заводського виготовлення, що випускаються російською та українською промисловістю.

Продуктивність цих установок змінюється в діапазоні від 100 до 10000 м3/добу.

Для очищення підземних вод від заліза і марганцю використовуються установки типа «Деферит»[7]. Для очищення підземних вод, що містять складніші форми заліза, підвищених концентрацій фтору і солей жорсткості, а також для поверхневих вод використовуються установки «Струмінь-М». Для досить великих комунальних споживачів розроблені і виготовляються водоочисні станції заводського виготовлення типа «Роса» продуктивністю від 1,6 до 1000 м3/добу

За наявності в джерелах водопостачання хімічних забруднень (фенолів, нафтопродуктів), органічних сполук, а також наявності підвищених концентрацій марганцю і сірководню, всі вказані типи установок можуть бути додатково оснащені блоками озонування і сорбційного очищення води..

При цьому продуктивність озонаторів може змінюватися від 100 г до 2 кг/ч. Для сорбційного очищення слід використовувати додаткові фільтри в кількості меншому в 1,5 - 2 рази, чим піщаних. Для оснащення водоочисних установок вказаним устаткуванням потрібне додаткове конструкторське опрацювання в розробці креслень дообладнання до кожного розміру установок.


6. Експерементальні дослідження

Для встановлення закономірностей очищення води за допомогою деструкційних методів було проведено серії дослідів по вивченню впливу озону на очистку модельних розчинів.

6.1 Визначення масової частки озону в озоно-повітряній суміші (ОПС).

Рисунок. 6.1 Схема установки озонування води

1 – компресор; 2 – фільтр-осушник; 3 – манометр; 4 – система регулювання тиску; 5 – абсорбційна колона; 5.1 – кран відбору проб; 5.2 – пориста перегородка; 5.3 – кришка; 6,7 – трьоходові крани; 8 – дрексель для аналізу; 9 – газовий годиник; 10 – вловлювач озону; 11 – захисна петля; 12 – озонатор.


Визначення озону в ОПС здійснюється об’ємнометричним методом. Для проведення аналізу дрексель 8 заповнюють на 2/3 5÷10% розчином КІ. Вмикають компресор 1 за допомогою системи 4 виставляють витрату ( при чому тиск на манометрі 3 не повинен перевищувати 0,15 МПа). Кран 6 повинен бути в положенні в обхід колони 5. Вмикають озонатор і виставляють напругу в межах 20÷35 кВ, пропускають 5÷10 літрів ОПС, при чому фіксують час, за який ця суміш пройде дрексель 8. Об’єм встановлюють за допомогою газового годинника 9. Розчин з дрекселя 8 кількісно переносять в колбу на титрування (на 500 мл), додають 20 мл 1н H2SO4 та 5÷10 крапель 1% розчину крохмалу( крохмал має бути свіжоприготовленим).

Титрують отриману суміш, до знебарвлення, розчином Na2S2O3 0.005 н попередньо додавши 20 мл 1Н сульфатної кислоти.

Вміст O3 в ОПС визначають за формулою:

X=(V(Na2S2O3)∙K∙0.005∙24)/V, (6.1.1)

де X – вміст O3 в ОПС г/дм3,

V(Na2S2O3) – об’єм тіосульфату, що пішов на титрування,

К – поправочний коефіцієнт концентрації Na2S2O3,

0,005 – концентрація Na2S2O3,

24 – еквівалент озону,

V - об’єм ОПС.

Далі знаходимо витрату ОПС.

W= V/t; (6.1.2)

де V– витрата ОПС, дм3/c,

t – час, за який пройшло V літрів газу.

А потім визначаємо концентрацію озону, яку продукує озонатор.


С(O3) = X∙W; г O3 / дм3. (6.1.3)

6.2 Видалення барвників за допомогою озонування

Для проведення досліджень необхідно приготувати 1 дм3 води з концентрацією барвника 40÷200 мг/дм3. (В якості барвника підійде будь-який барвник органічної природи). 600 см3 отриманого розчину заливають в абсорбційну колону 5, в яку через пористу перегородку 5.2 подається ОПС. Закривають кришку 5.3. В разі коли немає необхідності у визначенні залишкового озону кран 7 переводять у положення 1. При цьому газ після колонки 5 йде на поглинач 10.

Для визначення залишкового озону кран 7 переводять у положення 2 і проводять згідно методики О3 в ОПС.

Для встановлення кінетики видалення барвників кожні 5 хв проводять визначення оптичної густини, пробу для аналізу відбирають через кран 5.1.