В исследованиях комплексного воздействия на гидробионтов закисления водной среды и повышенной биогенной нагрузки использованы модельные популяции лабораторной культуры Daphniapulex Leydig. Для создания фосфорной нагрузки применяли однозамещенный фосфат натрия. Концентрации фосфора в опытах задавали, исходя из градации сапробности вод в соответствии с ГОСТ 17.1.2.04-77, от олигосапробного (в контроле) до гиперсапробного класса. В связи с тем, что во всех опытах использована одна и та же вода со средним содержанием Pмин. 0.034 мг/л, в изложении результатов под концентрацией фосфора мы подразумеваем его надфоновую добавку (0.05, 0.2, 0.4 и 0.8 мгР/л). Сравнение параметров осуществляли по индексам численности и биомассы (за 1 принимали значения для нейтральной среды, либо для среды без дополнительного внесения фосфора).
Биологическая шкала распределения индикаторных видов зоопланктонных организмов по степени закисления поверхностных вод, ориентированная на водоемы северотаежной зоны, разработана на основе учета присутствия (относительной биомассы, %) в составе планктоценозов индикаторных видов, чувствительных к определенным значениям рН среды. Материалом для анализа видового состава зоопланктонных сообществ служили опубликованные данные комплексных исследований водоемов Кольского полуострова и Карелии в период летней вегетации [Филимонова, 1963; Филимонова, Юрковская, 1964, 1971; Филимонова, Козлова, 1974; Филимонова, Кутикова, 1975; Хохлова, 1970; Белоусова, Филимонова, 1973; Макарцева, 1974; Салазкин, 1976; Иголкина, 1991].
Апробация разработанной биологической школы проведена при оценке степени закисления водных экосистем региона Карелии. Для анализа ацидорезистентности зоопланктоценозов условно чистых малых водоемов южной Карелии использованы архивные материалы СевНИИРХ ПетрГУ [Выбор дополнительной группы…,1970]. Данные по состоянию сообществ зоопланктона озерно-речной системы Кенти-Кенто любезно предоставлены Л.И. Власовой - ответственным исполнителем раздела мониторинговых исследований системы реки Кенти, проводимых в 1981-1987 и в 1995-1997 г.г. ИВПС Карельского НЦ РАН. При определении уровня закисления трех районов Северного Выгозера использованы материалы, представленные в диссертации Т.П. Куликовой (1984). Количественную оценку реакции зоопланктона на закисление озерных вод осуществляли по биомассе индикаторных видов (%%) в общей биомассе руководящего комплекса.
2. Зональные особенности устойчивости водных биоценозов к антропогенной токсикологической нагрузке
2.1 Актуальность проблемы зональной токсикорезистентности пресноводных экосистем
Анализ литературы позволяет выделить (достаточно условно) два комплексных фактора снижения забуференности водных экосистем в направлении высокоширотных природных зон: биотический и абиотический. Биотическое уменьшение токсикорезистентности обусловлено упрощением трофической структуры, снижением биомассы и биопродуктивности водоемов, увеличением стенобионтных и олиготоксобных организмов, снижением самоочищаемости и восстанавливаемости водоемов. Абиотическое уменьшение устойчивости к интоксикации связано, прежде всего, с падением минерализации, жесткости и активной реакции водной среды.
Игнорирование поливалентного характера буферности пресноводных водоемов, сведение ее к одному-двум не всегда ведущим параметрам влечет за собой методологическую и методическую ошибку при экстраполяции полученных в лаборатории выводов на все природное многообразие водных экосистем. Разработка экологического подхода к нормированию антропогенной нагрузки на водоемы с учетом зональных особенностей их токсикорезистентности является актуальной природоохранной проблемой.
2.2 Влияние абиотических и биотических факторов водной среды на устойчивость гидробионтов к антропогенной интоксикации
Обследованные водоемы Карелии, Восточно-Казахстанской области (ВКО) и Южного Урала по минерализации входили в диапазон от ксеногалобных до полигалобных, с водой от очень мягкой до очень жесткой и рН от нормальной до щелочной, по перманганатной окисляемости - от ксеносапробных до полисапробных, по содержанию хлорофилла на период исследований - от олиготрофного до эвтрофного типа.
Результаты токсикометрии реагентов, проведенной на Урале и в ВКО, свидетельствуют о существенном влиянии качества фоновой среды на их токсичность для гаммарид. Так, например, в регионе Южного Урала максимальные различия по LT50 составляют для никеля 7, меди – 217, свинца – 42, прометрина – 5.5 раз; по Кп для никеля - 25, меди - 20, свинца -55, прометрина - 27 и бензина – 42 раз. В регионе ВКО на разных фоновых средах величина КТН50 цинка максимально отличается в 6 раз, а различия по Кп достигают для меди 170, цинка - 29, свинца - 19, калия и солярки -17 и ДДВФ - 250 раз.
Парный корреляционный анализ показал, что все исследованные параметры фоновой среды в той или иной степени статистически достоверно влияют на токсичность различных реагентов. Исходя из частоты достоверного воздействия (%) показателей водной среды на токсикометрические параметры получены получаются следующие ряды факторов по их значимости в определении токсичности поллютантов:
водоемы Южного Урала
минерализация (54 %) = Mg2+(54 %) > жесткость (46 %) = SO42-(46 %) = Na++K+ ( 46 %) > Cl- (39 %) > ПО (31 %) > НСО3- (23 %) = Са2+ (23 %) > рН (15 %) > хлорофилл (8 %) = СО32- (8 %).
водоемы Восточно-Казахстанской области
минерализация (57 %) = жесткость (47 %) > хлорофилл (33 %) = Mg2+(33 %) = НСО3- (33 %) > Cl- (22 %) = SO42-(22 %) = Са2+ (22 %) > рН (0 %).
В обоих регионах минерализация и жесткость являются ведущими параметрами, определяющими уровень токсичности большинства изученных реагентов, а токсичность металлов в большей степени зависит от фоновых характеристик водной среды, чем нефтепродуктов и пестицидов.
Парный регрессионный анализ позволил получить целый ряд уравнений зависимости токсикометрических параметров реагентов от исследованных параметров водной среды (р ≤ 0.05). На примере металлов мы рассчитали их токсичность при разных уровнях гидрохимических показателей и содержания хлорофилла, соответствующих средним значениям различных типов и классов озер (рис.1). При увеличении значений фоновых характеристик водной среды закономерно повышаются все токсикометрические параметры меди и никеля, т. е их токсичность при остром и хроническом воздействии (по LT50 и ПК) для гаммарид Южного Урала снижается. Увеличение Кп также указывает на понижение токсичности металлов по мере возрастания фоновых показателей. В регионе ВКО выявлены аналогичные закономерности. Приведенные данные свидетельствуют о существенной статистически и биологически значимой зависимости токсичности металлов от трофического статуса водоемов и всего комплекса исследованных гидрохимических показателей.
Рис. 1. Влияние хлорофилла (А) и гидрохимических показателей водной среды (Б, В и Г) на токсикометрические параметры металлов для Gammarus lacustris из оз. Карагайского (регион Южного Урала): 1 - медь (LT50), 2 - медь (Кп), 3 - никель (LT50), 4 - никель (ПК), 5 - никель (Кп)
Анализ результатов 88 экспериментов, проведенных в регионе Карелии на фоне воды из 6 водоемов показал, что даже в узком диапазоне изменения параметров водной среды Кп для исследованных веществ изменяется в достаточно широких пределах: для меди - в 2.6, цинка - до 45, никеля - до 8, свинца - до 68, солярки – до 10, прометрина - до 20, ДДВФ - до 17, бензина - до 3497 раз. Установлено также, что ПК токсикантов зависит не только от фоновых характеристик водоемов, но и от тест-объекта. Так, ПК никеля для сценедесмуса изменяется на разных фонах в 2.3, для рыб – в 1.8, для дафний – в 24.6 раза; бензина для сценедесмуса – в 1.3, для рыб – в 8.7, для дафний – в 1645 раз; прометрина для сценедесмуса – в 25, для сига – в 7.8, для форели – в 26.7, для дафний – в 400 раз.
В экспериментах на D. magna изучено влияние гидрохимического класса вод на ПК реагентов. Модельную фоновую среду создавали добавлением гидрокарбоната, сульфата и хлорида натрия к воде из Урозера до общей минерализации 200 мг/л. Полученные результаты указывают на существенную зависимости токсичности веществ различной природы от анионного состава среды, причем, эта зависимость неодинакова для изученных реагентов (табл. 1). Следовательно, при разработке токсикологических нормативов целесообразно учитывать химический класс вод.
Таблица 1 Влияние гидрохимического класса водной среды на токсичность реагентов для Daphnia magna (экспозиция 30 суток)
Класс вод | Пороговая концентрация, мг/л | |||||||
Медь | Цинк | Свинец | Никель | Солярка | БензинА-76 | ДДВФ | Промет-рин | |
Гидрокарбонатный | 0.0100 | 0.050 | 1.82 | 0.069 | 7.80 | 324 | 0.00020 | 1.38 |
Сульфатный | 0.0004 | 0.010 | 0.09 | 0.052 | 0.26 | 166 | 0.00001 | 0.29 |
Хлоридный | 0.0040 | 0.004 | 2.00 | 0.038 | 1.20 | 65 | 0.00001 | 0.33 |
Также экспериментально показано, что на фоне воды с более высоким содержанием гуминовых веществ (ГВ) возрастает доля связанных форм меди и цинка и обнаруживается меньшая токсичность, чем на воде, обедненной гумусом. Комплексообразующая способность ГВ должна учитываться при разработке ПДК для металлов.
2.3 Зональная характеристика токсикорезистентности пресноводных биоценозов
О безусловной зависимости функционального состояния биоценозов озерных экосистем от природной климатической зоны свидетельствуют данные собственного расчета токсобности и сведения других авторов [Борисов, 1975; Будыко, 1977; Китаев, 1984], представленные на рис. 2. От тундры к степной зоне увеличивается не только биомасса, биопродуктивность и сапробность гидробионтов, но и их эврибионтность, а также преадаптивно связанная с ней токосбность. С севера на юг наблюдается снижение почти до полного исчезновения в составе ихтиофауны и руководящих комплексах зоопланктона доли олиготоксобных видов при увеличении в- и б-мезотоксобов, характеризующихся повышенной устойчивостью к загрязнению.