Нефтью и нефтепродуктами сегодня загрязнена даже Антарктида. В России же вообще добыча, транспортировка и переработка нефти воспринимаются как страшная угроза живой природе. И не без оснований – в Западной Сибири, где сорок лет назад начали осваивать крупнейшие месторождения, на огромных территориях нефть уничтожила все живое.
Проблема оказывается в центре внимания СМИ, когда случаются крупные разливы (аварии танкеров, разрывы нефтепроводов). Но проходит время, это перестает быть новостью, и о «нефтяной угрозе» биосфере благополучно забывают, хотя покрытые нефтяной пленкой акватории, пляжи или участки тайги не восстановятся и через десятилетия. На автозаправочных станциях, аэродромах, военных базах (точнее, под ними) все чаще находят огромные «линзы» нефтепродуктов. Загрязнения нефтепродуктами крайне опасны, ибо некоторые их компоненты, в частности полиароматические углеводороды, весьма токсичны (канцерогенны) и разрушаются крайне медленно.
Бороться с загрязнением окружающей среды, как оказалось, могут микроорганизмы. Они эффективнее любых других живых существ превращают сложные соединения в простые. Для микробов это просто процесс питания – использование сложных органических соединений в качестве источников азота, углерода, фосфора и т.д. Сложные соединения служат пищей, а простые поступают в биосферу, участвуя в знакомом со школы цикле органических соединений. Но микроорганизмам приходится иметь дело и с новыми для них соединениями, которые прежде были надежно спрятаны в тайниках планеты, скажем, глубоко под ее поверхностью. Так произошло и с нефтью, которую «вытащили» на поверхность. С каждым днем в биосферу попадают все новые синтетические органические соединения, которых никогда не было в природе. И микробы не только демонстрируют фантастическую способность к их переработке, но и непрерывно эволюционируют. И здесь специалисты возлагают надежды на микроорганизмы, полученные методами генной инженерии и обладающие нужными свойствами. Однако общество боится гипотетических рисков генной инженерии, в том числе и «выведенных» с ее помощью микроорганизмов. Кстати, далеко не все генетически модифицированные микроорганизмы – продукты генной инженерии: они прекрасно обмениваются генами и в природе.
Кроме очевидного использования микроорганизмов в решении экологических проблем, существует и их «косвенное» участие.
Легко растворимая закись железа выносится с водой на поверхность. Здесь под действием железобактерий она окисляется, превращается в нерастворимую гидроокись и выпадает в осадок. В результате железо перекочевывает из глубин Земли на поверхность и откладывается в виде железной руды. На это еще в 1888 году указывал известный русский микробиолог С. Виноградский (1856—1953).[5;56]. Все важнейшие мировые месторождения железа, по мнению ряда ученых, имеют бактериальную основу. Член-корреспондент АН СССР А. Вологдин (1896— 1971) отмечал, что ему приходилось наблюдать под микроскопом останки древних железобактерий во многих рудах — из Кривого Рога, с Кольского полуострова, из Казахстана, из Сибири, с Дальнего Востока. И на дне Мирового океана океанологи обнаруживают колоссальное количество скоплений железомарганцевых конкреций, как полагают, микробиологического происхождения.
А поскольку эти бесконечно малые организмы ведут такую титаническую геологическую деятельность в масштабах нашей планеты, если они так могущественны и всесильны, то их, естественно, нужно заставить работать на человека не только в микробиологической, химической, пищевой, фармацевтической промышленности, в сельском хозяйстве, в горнорудной и металлургической промышленности, но и в биометаллургии и биогорнорудной промышленности.. Здесь для них необъятное поле деятельности.
Более тридцати лет назад провели исследование ржавого осадка в шахтных и рудничных водах. Предполагалось, что он образуется только в результате окисления. Опыты же показали, что в стерилизованной воде железо практически не окисляется, зато в шахтной... Трое суток — и оно покрылось красноватым налетом. Виновники этой «химической диверсии» были обнаружены с помощью микроскопа. То, что раньше принимали за обычную реакцию, оказалось биологическим процессом, в котором главную роль играют серо- и железобактерии. Те же самые серобактерии по собственному почину освобождают уголь от соединений серы: за месяц они окисляют до 30 процентов серы и удаляют ее в виде серной кислоты. Процесс этот протекает слишком медленно, чтобы применять его в промышленности. Но зато он не требует никакого специального оборудования.
В своей жизнедеятельности серобактерии выступают, подобно двуликому Янусу, сразу в двух амплуа: в роли создателей месторождений серы и в роли рудных браконьеров. Они разрушают вскрытые месторождения сульфидных руд, окисляя нерастворимые в воде сульфиды металлов и превращая их в легкорастворимые соединения. Разумеется, сульфоредуцирующие микробы об этом даже не подозревают. Добывая себе энергию за счет реакции окисления, они, как отмечалось выше, хищнически разоряют залежи сернистых руд. Переведенные в растворимую форму соединения металла вымываются дренажными и почвенными водами. Ценный продукт беспрепятственно уходит из руды и теряется безвозвратно.
А можно ли рудных браконьеров перевоспитать, превратить из хищников в обогатителей бедных руд, в деятельных металлургов? - Можно! Продукты собственного химического производства не интересуют железо- и серобактерии. Неорганические молекулы для них лишь своеобразные «дрова». Сжигая их в «пламени химического костра», они получают необходимую для себя энергию. Следовательно, не ущемляя интересов бактерий, с ними можно заключить взаимовыгодный договор: вам — вершки, а нам — корешки, вам — тепло «химического костра», а нам — его золу. Именно с этой целью и вступили уральские ученые «в союз» с серобактериями. Они разработали схему первой опытно-промышленной установки по бактериальному (подземному) выщелачиванию металла из медных и цинковых руд. Она оказалась предельно простой. По трубопроводу в скважины подается бактериальный раствор. Он увлажняет руду. Бактерии окисляют металл, и он переходит в раствор (концентрат), который выкачивается на поверхность в специальные желоба. На этом производство концентрата заканчивается. Содержание металла в нем достигает 80 процентов. Только за время опытов на Дегтярском месторождении с помощью бактериального выщелачивания были добыты десятки тонн меди, причем руда бралась с отработанных участков месторождения. Полученная этим способом медь почти втрое дешевле, чем при использовании других методов.
Не секрет, что металлургам все чаще и чаще приходится иметь дело с бедными рудами, волей-неволей приходится затрачивать огромные средства на сооружение больших комбинатов, единственное назначение которых — увеличить содержание металла в руде. От всего этого нас освободит будущая высокоскоростная биометаллургия, фундамент которой закладывается сегодня.
Опыт подземного выщелачивания показал, что использование бактерий особенно эффективно на последней, завершающей стадии эксплуатации рудников. На этом этапе они вообще незаменимы. Обычно в выработанных месторождениях, как правило, еще остается от 5 до 20 процентов руды. Извлечь ее современными техническими средствами почти невозможно. Добраться до этого подземного кладбища меди можно лишь одним-единственным путем — мобилизовав многомиллиардную армию бактерий. Подобно трудолюбивым муравьям или сказочным гномам, они будут без устали работать, переводя металл из невыработанных остатков руды в раствор. Так можно вернуть, по меньшей мере, три четверти оставшихся запасов медной руды. Тридцать пять лет назад закрылось месторождение Южная Выклинка. Маркшейдеры сказали — меди нет. Призвали на помощь бактерии — начали получать десятки тонн металла. Таким же путем на мексиканском руднике из старых, заброшенных забоев за один только год было «вычерпано» 10 тысяч тонн меди.
По мере выработки природных месторождений ценных ископаемых взоры специалистов все чаще и чаще обращаются к накопившимся у шахт и рудников отвалам пород. Уже в первых опытах бактерии и здесь зарекомендовали себя самыми экономными и непривередливыми металлургами. За многие годы в Мексике на месторождении Кананеа возле шахт скопилось около 40 миллионов тонн отвалов породы. Содержание меди в них мизерное — всего 0,2 процента. Отвалы начали орошать шахтной водой, которая стекала затем в подземные резервуары. Из каждого литра собранной воды бактерии извлекли по три грамма меди. В итоге — 650 тонн дорогого металла в месяц!
Методом выщелачивания с помощью микроорганизмов можно добывать такое важное в наше время топливо, как уран. Обычно он находится в рудах в очень невысокой концентрации. Поэтому для добычи урана выгодны малоэнергоемкие методы. Уран может быть извлечен с помощью кислых растворов, образованных бактериальным окислением сульфидов. Сама организация бактериального выщелачивания урана довольно проста. Дробленую руду складывают в штабеля на водоупорной площадке, например асфальтированной. Затем кучи высотой до 2 метров увлажняют, и в них происходит развитие тионовых бактерий за счет имеющихся сульфидов. Примерно за два года происходит выщелачивание до 80 процентов урана. При подземном выщелачивании забалансированную пиритизированную урановую руду орошают в выработках. Орошающие воды выкачивают на поверхность, и уран извлекают из раствора на ионообменных смолах. Вода с сернокислым закисным железом поступает в прудки, где происходит окисление железа, и кислый раствор вновь поступает на орошение руды.