Смекни!
smekni.com

Дистанційний екологічний моніторинг (стр. 7 из 19)

Доцільно формувати систему з двох ідентичних супутників, що знаходяться на колокругових сонячно-синхронних орбітах з Η=830...850км, траси яких розташовані у відповідності до об’єкту моніторингу, а камери працювати з відхиленням оптичних осей поперек траси на кути до 40º. Така система забезпечує зйомку довільно розташованих ділянок (за умови відсутності хмарності над цими ділянками).

Для прийняття рішення реєстрацію тієї або іншої з заданих ділянок в реальному часі зйомки доцільно мати на борту спеціальний прилад для реєстрації хмарності. Їм може бути скануючий апаратсереднього розрізнення, з оптичною віссю, яка відхилена на кут 45-50º попереду подовж траси, що реєструє розподілення хмарності в межах усієї віртуальної смуги огляду апарата високого розрізнення. Такий скануючий апарат надасть інформацію про можливість реєстрації ділянки приблизно за 1,5 хв. До моменту зйомки цієї ділянки, що достатня для автоматичного корегування програми зйомки за допомогою бортового комп'ютера.

Формування системи високого розрізнення для зйомки з інтервалом у декілька годин

Для високо оперативної зйомки з числом супутників k≥4, оптимальну орбіту можна обрати незалежно від сонячного освітлення. Спосіб обрання таких орбіт призводить до єдиної орбіти з параметрами: ί =86, N=14,0, H=880 км. Ця орбіта дійсно забезпечує зйомку з нахилом довільної ділянки місцевості датчиком високого розрізнення через кожні 24/k протягом усього світлового часу доби. Розрахунки показують, що при H=800 км віртуальна смуга огляду в 1430 км перекривається вузько кутовим датчиком при

≤44°, що допустимо.

Переваги системи, що базується на прямій геосинхронній орбіті, в порівнянні з системою моніторингу, що ґрунтується на сонячно-синхронних орбітах:

Система, що сформована з k супутників тривалого функціонування, забезпечує зйомку довільно розташованих заданих ділянок через кожні 24/k години протягом усього світлового часу доби. В той час як із сонячно-синхронних орбіт 4 супутники забезпечують зйомку не частіше, ніж 2 рази на добу.

Зйомка з прямої геосинхронної орбіти забезпечує одержання зображень місцевості при самих різних напрямках освітлення, а це дозволяє покращати інтерпретацію знімків за рахунок використання струкурозонального аналізу знімків та більшості інших статистичних і автоматизованих методів дешифрування.

За умови однакової середньої швидкості переробки інформації, для зйомки з прямої геосінхронної орбіти відповідають менші пікові навантаження.

Можливість зйомки полюсів Землі та примикаючи до них ділянок, що не забезпечуються з сонячно-синхронних орбіт.

Можливість здійснення 14 - кратної зйомки в різні інтервали часу доби.

Недоліки:

Неможливість здійснення суцільної надірної зйомки місцевості.

Деякі збільшення часток ділянок, що завжди реєструються при нахиленнях оптичної осі, наближених до

Повільніше збільшення відсотка перекриття віртуальних смуг огляду з віддаленням від екватору.

Неможливість формування системи менш ніж з 4 супутників.

2.3 Вплив хмарності. Єдина багатоцільова система

2.3.1 Специфіка космічної зйомки високого розрізнення

Космічна зйомка високого розрізнення необхідна не лише з метою моніторингу, але й із метою рішення більшості задач дистанційного зондування Землі.

Особливості такої зйомки

Вузька смуга огляду, що на порядок та більше відрізняється від смуг огляду датчиків малого та середнього розрізнення.

Придатність результатів включення в серійні, масові пошуки екологічної, геологічної, сільськогосподарської та іншої направленості.

Необхідність здійснення зйомки лише в ясну погоду, при задовільній прозорості атмосфери.

Необхідність в більшості випадків, здійснення зйомки в суворо визначений сезон.

Жорсткі вимоги до надійності та своєчасності зйомки.

Отже космічні знімки високого розрізнення необхідні, якщо забезпечено їхнє надійне одержання і вони здійснені в необхідний сезон та ясну погоду.

2.3.2 Ймовірна оцінка впливу хмарності

Нехай буде називатись номінальним періодом зйомки nнайменший інтервал часу в (добах) поміж двома реєстраціями ділянки, що досягається для конкретної знімальної системи без урахування впливу погодних умов. Для систем, що розраховані лише на надірну зйомку, n співпадає з періодом глобального огляду. Наприклад, для супутника Landsat-4 n= 16 діб.

Реальний період зйомки може істотно відрізнятись від номінального. Реальний період зйомки фіксованої ділянки залежить від n та від погодних умов на ділянці в заданий сезон його зйомки. Для наближеної оцінки ймовірності зйомки необхідна апріорна оцінка погодних умов.

Нехай спочатку необхідно визначити ймовірність P зйомки ділянки в фіксовану добу, у випадку, коли природоресурсний супутник типу Landsat пролітає в цей день над відповідною ділянкою. Час надірної зйомки ділянки сонячно-синхронної орбіти наперед невідомий, а зйомка можлива, якщо в цей час погода на всій ділянці ясна, але необхідно, щоб прозорість атмосфери була придатною, а хмар не було б і поблизу границь ділянки, бо інакше якість зображення зменшується, а коефіцієнти спектральної яскравості об'єктів виявляються перекрученими.

Крім того, апріорна оцінка P можлива лише за результатами багаторічних даних метеопостів, або ж метеореологічних супутників.

Для переходу до зйомки протягом сезону тривалістю m діб будемо вважати значення апріорної ймовірності зйомки для кожної доби сезону незалежними та позначимо через

її середнє значення.

Оцінка впливу хмарності при космічній зйомці з метою дослідження природних ресурсів Землі або моніторинг складаються з рішення декількох основних задач.

Задачі, що відносяться до одноразової зйомки малої ділянки, що реєструється в межах однієї смуги огляду:

а) визначити ймовірність

здійснення зйомки протягом сезону тривалістю m діб системою з nom періодом n діб;

б) здійснити попередній розрахунок значення n, необхідне для зйомки в заданий інтервал m з заданою ймовірністю

.

Тіж самі задачі для ділянки, що реєструються лише в межах j смуг огляду (j≥2).

Тіж самі задачі для ділянки, що реєструються ί разів (ί≥2), до того ж кожного разу протягом інтервалу в m діб (припускається, що інтервали не пересікаються).

Задача 1а. Задача зводиться до схеми випробувань Бернуллі, в якій число випробувань може приймати одне двох значень з ймовірністю, що залежить від цілої та дробної частини відношення

. Рішення задачі одержують за рахунок використання формули повної ймовірності (Формула Байеса):

В оберненій задачі 1б формула, що одержана для визначення

, використовується як рівняння, з якого і визначають відношення
.

Таблиця 2.1

Ймовірність

здійснення зйомок ділянки в залежності від діяльності сезону m, nom періоду системи n та апріорних метеоумов (p)

Одноразова зйомка (і=1)
р 5/6 1/2 1/6
m\n
7 15 30 90 7 15 30 90 7 15 30 90
j=1
1 1,0 1,0 1,0 1,0 0,9 1,0 1,0 1,0 0,72 0,94 1,0 1,0
2 1,0 1,0 1,0 1,0 0,91 0,99 1,0 1,0 0,74 0,74 0,94 1,0
5 0,89 1,0 1,0 1,0 0,6 0,88 0,98 1,0 0,22 0,42 0,66 0,96
16 0,36 0,78 0,96 1,0 0,22 0,47 0,72 0,98 0,07 0,16 0,29 0,64
j=2
1 1,0 1,0 1,0 1,0 0,94 1,0 1,0 1,0 0,33 0,74 0,97 1,0
2 0,96 1,0 1,0 1,0 0,59 0,95 1,0 1,0 0,1 0,36 0,74 1,0
5 0,28 0,93 1,0 1,0 0,1 0,5 0,89 1,0 0,01 0,07 0,26 0,83
16 0 0 1,0 1,0 0 0,22 0,86 0 0 0,02 0,24
j=4
1 0,98 1,0 1,0 1,0 0,5 0,98 1,0 1,0 0,02 0,23 0,76 1,0
2 0,24 0,99 1,0 1,0 0,03 0,57 0,98 1,0 0 0,02 0,23 0,96
5 0 0 0,94 1,0 0 0 0,34 1,0 0 0 0,01 0,35
16 0 0 0 0,89 0 0 0 0,29 0 0 0 0,01
Багаторазова зйомка(ί=2; 5; j=1)
ί=2
1 1,0 1,0 1,0 1,0 0,98 1,0 1,0 1,0 0,52 0,88 1,0 1,0
2 1,0 1,0 1,0 1,0 0,83 0,98 1,0 1,0 0,53 0,55 0,88 1,0
5 0,79 1,0 1,0 1,0 0,36 0,72 0,96 1,0 0,05 0,18 0,44 0,92
16 0,13 0,61 0,92 1,0 0,05 0,22 0,52 0,96 0 0,03 0,08 0,41
ί=5
1 1,0 1,0 1,0 1,0 0,95 1,0 1,0 1,0 0,19 0,73 1,0 1,0
2 1,0 1,0 1,0 1,0 0,62 0,95 1,0 1,0 0,03 0,22 0,72 1,0
5 0,56 1,0 1,0 1,0 0,08 0,52 0,9 1,0 0 0,01 0,13 0,82
16 0,01 0,29 0,81 1,0 0 0,02 0,19 0,9 0 0 0 0,11

Аналогічно, хоч і дещо складніше, розв'язують і другу задачу. Після цього третя задача не викликає ускладнень, бо ймовірність здійснення ί-кратної зйомки дорівнює, за інших рівних умов, кореню ί-го ступеню із ймовірності одноразової зйомки.