Рост концентрации кремнезема, глинозема и окислов железа обусловлен их практически неподвижным состоянием в процессе окисления. Эти компоненты не могут переходить в высокоминерализованный водный раствор, насыщенный сульфатами, поэтому их концентрация увеличивается благодаря выносу подвижных компонентов из исходных пород при окислении или горении последних. При этом монолитные породы становятся пористыми. В переходных зонах эти поры заполняют легко растворимые водой сульфаты, гидрокарбонаты, а на удалении от очагов окисления, где вымывание этих минералов атмосферными водами опережает процессы их образования, видны пустоты различной формы. Эти пустоты образовались на месте ранее существовавших окисленных минеральных агрегатов и органического вещества. Поэтому для роста концентрации неподвижных компонентов достаточным является вынос других – подвижных компонентов. Увеличение концентрации окислов кальция и микроэлементов может быть обусловлено их выносом из промежуточных зон окисления, где отмечается падение их содержаний. Окислы натрия, серы и сульфат-ион являются подвижными, их максимальные концентрации отмечаются в промежуточной зоне развития белой сульфатной минерализации. Окисленные кирпично-красные породы уже обеднены этими компонентами за счет их вымывания атмосферными осадками.
Вынос в процессе окисления испытывают Cорг. (от 7, 71% до 0, 11%); MgO (от 1, 55% до 1, 15%); K2O (от 2, 62% до 2, 38%); H2O (от 1, 91% до 1, 06%); NO- ; Cl-. Углерод, составляющий основу органической части исходных отвальных пород, окисляется (выгорает), частично улетучивается в атмосферу в виде углекислого и угарного газов, отчасти участвует в образовании новых минералов – карбонатов и гидрокарбонатов натрия, кальция, магния, железа. Магний и калий переходят из гидрослюдистых минералов пород в подвижное состояние и мигрируют водными растворами. Вода, определяющая влажность пород и играющая главную роль в процессе окисления, по мере роста температуры испаряется и мигрирует в промежуточные зоны, где достигает максимальной концентрации в связи с белой сульфатной минерализацией, что подтверждает формирование последней из пересыщенных водных растворов. Хлориды и нитраты, образующиеся в процессе окисления, выносятся, частично с компонентами выбросов в атмосферу, и отчасти, мигрируя водными растворами, сохраняя в них свою устойчивость при пересыщении сульфат-ионом.
Главным элементом зоны окисления является сера и ее производные. Окисление серы сопровождается образованием сульфат-иона в условиях достаточного количества кислорода. Часть сульфат-иона мигрирует в атмосферный воздух с парами воды, а значительная его часть при выходе на дневную поверхность в условия низких температур конденсируется на контакте с породами. Охлажденные водные растворы становятся пересыщенными в отношении сульфат-иона, что благоприятствует выделению новых минералов. Именно в этой части ореола окисления отмечается максимальная влажность и концентрация сульфатов. Новообразованные минералы заполняют все существующие поры и трещины, породы приобретают массивность. Поэтому в этой зоне фиксируется пониженные концентрации ряда макро-и микрокомпонентов.
Терриконы являются экологически опасными объектами. Их можно сравнивать с небольшими «спящими» вулканами, выбрасывающими в атмосферу примерно тот же спектр веществ – серную кислоту, сероводород, аммиак, метан, двуокись азота, углекислоту и угарный газ. Основным компонентом выбросов является водяной пар. Вместе с паро-газовыми выбросами в атмосферу со стороны терриконов могут попадать летучие соединения токсичных элементов – ртути, мышьяка, кадмия и др.
Разогрев органической части угля в очагах окисления сопровождается ее термическим разложением, аналогичным процессу пиролиза. При этом образуются вредные летучие органические компоненты. В повышенных концентрациях в породах терриконов установлены:
1. Нефтепродукты в концентрациях до 548, 0 г/т. Максимальные концентрации нефтепродуктов наблюдаются в породе терриконов шахты "Паравичная" №5 и 1-7 "Ветка".
2. Фенолы в концентрациях до 0, 22 г/т. Минимальные концентрации фенола отмечаются в породах терриконов №2 шахты №4 «Ливенка» и №2 шахты «Центрально Заводская» - меньше 0, 01 г/т, максимальные - в породах террикона шахты №11 – до 0, 081 г/т.
3. Формальдегид установлен примерно в одинаковых концентрациях (до 0, 22 г/т) во всех изученных терриконах.
4. Моноэтаноламин зафиксирован в пробах с максимальной концентрацией 6, 25 г/т в породах террикона шахты «Центрально – Заводская». В отвальных массах террикона шахты №4 «Ливенка» обнаружена одна проба с концентрацией моноэтаноламина - 3, 65 г/т.
5. Максимальная концентрация дифенилопропана (2, 36 г/т) фиксируется в породе террикона шахты "Центрально-Заводская" №1.
В тех же пробах выполнялись определения содержаний таких токсичных и вредных химических веществ, как: толуол, метапараксилол, бутил ацетат, хлорбензол, стирол, ацентон, бензол, этилбензол, метапараксилол, ортоксилол, этил ацетат, изопропил бензол, метанол, пиридин, ацетофенон. Из этих компонентов в пробах установлены толуол, метапараксилол, бутил ацетат, хлорбензол, ацентон, бензол, толуол, этилацетат, преимущественно в концентрациях ниже ПДК [2].
Выбросы со стороны терриконов могут распространяться на сотни метров, захватывая большие площади, включая селитебные территории. Компоненты выбросов, осаждаясь на земную поверхность, загрязняют почво-грунты. При этом формируются ореолы рассеивания. Наиболее загрязненными являются заболоченные участки долин рек и днищ балок. Опыт проведения периодического экологического мониторинга почв в пределах г. Донецка показывает, что почво-грунты города имеют повышенный общегородской фон, зачастую превышающий ПДК, для кадмия, мышьяка, ртути, свинца и сульфат-иона. Источниками загрязнения почв данными компонентами являются в том числе выбросы со стороны отвалов.
Сами терриконы и ореолы рассеивания загрязняющих веществ в почвах служат источниками загрязнения водной среды сульфатами и токсичными компонентами. При этом загрязняется поверхностный сток, выщелачивающий растворимые сульфаты с поверхности терриконов и почв, и подземные воды в процессе инфильтрации загрязненных атмосферных осадков. Известно, что поверхностные и подземные воды городской черты имеют высокую минерализацию (более 2 г/л), жесткость (более 15 мг-экв/л), сульфатно-натриевый состав.
Негативные геологические процессы, связанные с терриконами, проявлены в разных аспектах. Водная эрозия их бортов приводит к расширению площади отвалов. Породная масса оказывает дополнительное давление на грунты основания, что может повлиять на изменение их фильтрационных свойств и оказывать локальное воздействие на уровенный режим первого от поверхности водоносного горизонта. Однако самое существенное негативное воздействие терриконы оказывают благодаря формированию зон замещения в грунтах зоны аэрации и в водовмещающих породах. Они проявлены развитием вторичной минерализации. В природных условиях эта минерализация представлена в виде обилия прожилково-вкрапленных карбонатов, развивающихся в зоне аэрации и в водовмещающих породах. В пределах городской территории, где осуществляются выбросы углекислоты, сернистого ангидрида и т.д., карбонатная минерализация замещается гипсом и содовыми минералами. В пределах зон разломов увеличивается не только количество гипса, но и размеры выделений, достигающие 15-20 см в диаметре. Проявляется вертикальная зональность, когда в верхней части зоны аэрации выделяются конкреции и прожилки землистых агрегатов содовых минералов, ниже по разрезу появляется гипс, который далее становится основным техногенным минералом. Эта зональность обусловлена различной растворимостью содовых минералов и гипса в воде. Зоны замещения сопровождаются перераспределением большей части макро- и микрокомпонентов как в грунтах зоны аэрации, так и в водовмещающих породах и в подземных водах. В качестве проводников данных процессов служат разломы или геодинамические активные зоны.
Эта проблема имеет очевидный инженерно-геологический аспект. Опасность процессов антропогенного замещения грунтов основания зданий и сооружений заключается в том, что первичные природные грунты с конкрециями карбонатов обладают достаточно высокими прочностными характеристиками как в сухом, так и во влажном (обводненном) состоянии. В отличие от них загипсованные грунты сохраняют устойчивость лишь в сухом состоянии. Длительное замачивание сопровождается растворением гипса и, соответственно, потерей несущих способностей грунтов. Опасность состоит в том, что гипс слаборастворим водой, имеющей повышенную минерализацию. Изменения прочностных свойств при замачивании проб грунтов в лабораторных условиях могут быть также не установлены. Поэтому построенный, например, жилой дом на таких грунтах может со временем разрушится, что в последнее время не редкость. Пока грунты сухие – дом стоит. Прохудившиеся водопроводные и канализационные сети приводят сначала к затоплению подвалов. Постоянная фильтрация через зону аэрации вод с пониженной минерализацией приводит к растворению гипса и грунты основания теряют свои прочностные свойства.
Роль терриконов в экологии города является исключительно негативной. Для ее оценки в каждом конкретном случае требуются специальные геолого-экологические исследования для разработки природоохранных мероприятий по минимизации негативных воздействий. Это, прежде всего, предотвращение выбросов, организация поверхностного стока, предотвращение фильтрации атмосферных осадков в горизонты подземных вод, рекультивация и озеленение. Самым оптимальным является разборка отвалов и утилизация породной массы с учетом ее физико-химических, физико-механических, минералого-геохимических и др. свойств.
Список литературы
Проскурня Ю.А. Диссертационная работа на соискание степени кандидата геологических наук на тему: «Минералогия породных отвалов угольных шахт Донбасса (на примере Донецко-Макеевского промышленного района). ДонГТУ, Донецк, 2000. 165 с.
Экология и геохимическая деятельность микроорганизмов / Под ред. М. В. Иванова. Пущино, 1976. 179 с.