Очевидно, что существование большего числа трофических уровней невозможно, из-за быстрого приближения биомассы к нулю.
Автотрофы и гетеротрофы.
Автотрофы - это организмы, способные строить свои тела за счет неорганических соединений, используя солнечную энергию.
К ним относятся растения ( только растения). Они синтезируют из СО
, Н О (неорганические молекулы) под воздействием солнечной энергии - глюкозу (органические молекулы) и О . Они составляют первое звено в пищевой цепи и находятся на 1 трофическом уровне.Гетсротрофы - это организмы, которые не могут строить собственное тело из неорганических соединений, а вынуждены использовать созданное автотрофами, употребляя их в пищу.
К ним относятся консументы и детритофаги. И находятся на II и выше трофическом уровне. Человек тоже гетеротроф.
Вернадскому принадлежит идея, что возможно превращение человеческого общества из гетеротрофного и автотрофное. В силу своих биологических особенностей человек не может перейти к автотрофности, но общество в целом способно осуществить автотрофный способ производства пищи, т.е. замена природных соединений (белки, жиры, углеводы) на органические соединения, синтезированные из неорганических молекул или атомов.
Изменение вещества и энергии в организмах.
Зелёные растения.
В растениях происходит процесс фотосинтеза, при котором из СО
, Н О и солнечной энергии получаются глюкоза и О . При этом солнечная кинетическая энергия превращается в потенциальную энергию молекул глюкозы. Глюкоза - это органическая молекула с высокой потенциальной энергией. Из солнечной энергии около 2 % превращается в потенциальную энергию молекул глюкозы.Глюкоза в растениях выполняет 2 функции:
1. Служит строительным материалом тела, т.е. из глюкозы образуются сложные органические молекулы (крахмал, целлюлоза, липиды, белки, нуклеиновые кислоты).
Источник энергии для всех процессов жизнедеятельности растений, т.е. построение тканей, поглощение питательных элементов из почвы, дыхание.
С6Н12О6 + О2Þ 6СО2 + 6H2О + Q
Процесс расщепления органических молекул с выделением энергии называется клеточным дыханием. Т.е. молекула глюкозы в присутствии кислорода разрушается до ÑО
, Н О с выделением энергии. Данный процесс идёт в каждой клетке и в целом противоположен фотосинтезу.Травы - энергия 40-50%
Деревья - 70-80% (в основном на дыхание)
Продуктивность экосистем, т/м2×год:
• Влажные тропические леса - 2200 , лиственные леса – 1200, тайга – 800, тундра – 140, пустыни - 90, озера, реки - 250 , океан - 80Т.о. только часть глюкозы используется растением для своего роста, а другая часть вновь разрушается с выделением энергии, необходимой для протекания физиологических процессов.
Консументы.
Животным свойственна активная выработка кинетической энергии (движение, бег, поддержание постоянной температуры тела, дыхание и т.д.). Источник энергии - потенциальная энергия органических молекул, потребляемых в составе пищи. Значительная часть пищи (90 - 99 %) разрушается с высвобождением энергии, обеспечивающий все функции организма и теряющейся в конце концов в виде выделяемого телом тепла.
Строительная роль пищи.
Часть съеденной, переваренной и поступившей в кровь пищи служит сырьём для роста и обновления тканей тела. Для этого также необходимые определённые витамины и микроэлементы (Fe, Си, Mn, Zn). Если в пище нет какого-либо из необходимых ингредиентов, сколько бы калорий не содержала пища, неизбежны функциональные расстройства.
Неусвояемое вещество.
Часть пищи не переваривается и просто проходит через пищеварительный тракт и выводится в виде фекалий или экскрементов.
Т.о. происходит превращение энергии из одной формы в другую, а именно солнечной энергии в потенциальную энергию, запасаемую растениями, а её-в другие виды по мере прохождения по пищевой цепи. На каждом трофическом уровне часть потенциальной энергии пищи расходуется на жизненные функции и часть теряется в виде тепла. Т.е. происходит поток энергии через систему.
Принцип функционирования экосистем.
1. Получение ресурсов и избавление от отходов происходят в рамках кругооборота всех элементов. Мы видим как четко взаимодействуют растения, консументы и детритофаги, поглощая и выделяя различные вещества. Органика и кислород, образуемые при фотосинтезе в растениях, нужны консументам для питания и дыхания. А выделяемый консументами СО
и минеральные вещества мочи - необходимы растениям.2. Экосистемы существуют за счёт не загрязняющей среду и практически вечной солнечной энергии, количество которой относительно постоянно и избыточно.
Солнечная энергия
химическая потенциальная энергия растений (передаётся по пищевым цепям) теряется в виде теплаИзбыток- растения используют 0,5% от падающей на Землю
Вечная - несколько млрд. лет
Чем больше биомасса популяции, тем ниже занимаемый его трофический уровень (99 % на энергию).
Закон лимитирующего фактора.
Для разных видов растений и животных условия, в которых они особенно хорошо себя чувствуют, неодинаковы. Например, одни растения предпочитают очень влажную почву, другие - сухую. Одни требуют сильной жары, другие лучше переносят более холодную среду и т.п. В лабораторных экспериментах эти различия проявляются особенно четко.
Проведены следующие лабораторные исследования. Растения выращивают в различных камерах, где контролируются все абиотические факторы. При этом один фактор изменяется, а остальные остаются неизменными. В данном случае изменяется температура / Результаты показывают, что по мере повышения температуры от некоторой величины, ниже которой рост вообще не возможен,,. растение развивается всё лучше и лучше, пока скорость роста не достигнет максимального значения. При дальнейшем повышении температуры растение будет чувствовать себя всё хуже и хуже и в конечном итоге погибнет. Графически это можно изобразить следующим образом .
У каждого фактора, влияющего на рост, размножение и выживание организма, есть оптимум, зона стресса и далее зона, в которой существование данного организма не возможно.
Зона оптимума - это обычно диапазон температур, а не конкретная величина т.е. диапазон температур, при которых максимальна скорость роста.
Слева и справа от зоны оптимума находятся зоны стресса, в них растение испытывает стресс с скорость роста резко уменьшается.
Диапазон устойчивости - диапазон температур, в котором возможен рост растения.
Предел устойчивости - минимальная и максимальная температура пригодная для жизни.
Сходные эксперименты можно провести и дня проверки влияния других факторов, причём результаты графически всегда одинаковы.
Подобные эксперименты показывают, что виды могут существенно различаться с точки зрения оптимальных условий и пределов устойчивости. Например, количество воды оптимальное для одного вида вызывает стресс у другого и приводит к гибели третий вид. Некоторые растения вообще не переносят заморозков (t<0°C), это ведёт к их гибели, другие растения способны выжить при небольших холодах, а есть растения, для которых несколько недель отрицательных температур - необходимое условие завершения жизненного цикла. То же самое справедливо и для других экологических факторов.
В описанном выше эксперименте изменялся только один фактор, а остальные как бы соответствовали зоне оптимума. Таким образом мы наблюдали действие закона лимитирующего фактора.
Даже единственный фактор за пределами своего оптимума приводит к стрессовому состоянию организма, а в пределе - к его гибели.
Такой фактор называется лимитирующим. Это относится к любому влияющему на рост параметру, которого «слишком мало» или «слишком много». Например, гибель растений вызывается и чрезмерным поливом и избытком удобрений, так и недостатком воды и питательных веществ. Это известно садоводам.
Закон лимитирующего фактора был сформулирован Либихом в 1840 году в ходе его наблюдений за влиянием на растения минеральных удобрений. Он обнаружил, что ограничение дозы любого удобрения ведёт к одинаковому результату - замедлению роста.
Дальнейшие наблюдения показали, что он относится ко всем влияющим на организм абиотическим и биотическим факторам. Это может быть и конкуренция, хищничество и паразитизм.
Кругооборот веществ в биосфере.
Процессы фотосинтеза органических веществ продолжаются сотни миллионов лет. Но поскольку Земля конечное физическое тело, то любые химические элементы также физически конечны. За миллионы лет они должны, казалось бы, оказаться исчерпанными. Однако этого не происходит. Более того, человек постоянно интенсифицирует этот процесс, повышая продуктивность созданных им экосистем.
Все вещества на нашей планете находятся в процессе биохимического кругооборота веществ. Выделяют 2 основных кругооборота большой или геологический и малый или химический.