Смекни!
smekni.com

Учет и утилизация отходов (стр. 9 из 14)

6. Очистка отходящих газов

Самыми распространенными соединениями, загрязняющими атмосферу, являются СО, SO2, NOx и твердые взвешенные частицы. Большинство из них токсичны, и превышения ими ПДК влечет за собой загрязнение окружающей среды, в частности наносит существенный вред живым организмам, обитающим как в близи источника загрязнений, так и на значительном удалении от него.

Перспективными для комплексной очистки отходящих газов от токсичных соединений признаны способы, использующие различные физические методы: электрические и магнитные поля, воздействие ультрафиолетового излучения. Наиболее перспективными для очистки отходящих газов признаны методы, использующие низкотемпературную плазму стримерного, коронного и барьерного разряда. Эти методы применяются для снижения токсичности отходящих газов, содержащих СО, SO2, NOx, пары органических соединений, твердые взвешенные частицы. Преимущества плазмохимического способа очистки состоит в том, что продукт, извлекаемый из плазмы, оказывается достаточно чистым и получается при незначительном числе стадий процесса. Использование плазмы требует меньших производственных площадей и дает меньшее количество отходов [11].

Большие перспективы для промышленного применения представляют разряды, образующие низкотемпературную плазму: тлеющий и коронный (барьерный, как частный случай коронного разряда, подразумевающий наличие диэлектрика между электродами). Тлеющий разряд требует поддержания в плазменном реакторе пониженного давления.

Барьерный разряд реализуется при атмосферном давлении и потому экономически выгоден, так как не требует средств откачки, что упрощает технологический процесс. Барьерный тип характеризуется с одной стороны сравнительно высокой энергией электронов (4 – 5 эВ), а с другой – низкой температурой газа, которая близка к температуре электродов. При этом энергия, вложенная в разряд, выделяется в короткоживущих, мало интенсивных искрах – микроразрядах [11]. Сочетание всех этих условий делает барьерный разряд эффективным для осуществления многих реакций: получение озона, проведение органических и неорганических синтезов, реакций полимеризации [16].

Одним из главных недостатков плазмохимического метода очистки газообразных отходов является образование побочных продуктов, в частности озона и оксидов азота.

Для повышения эффективности процесса был разработан реактор для более полной переработки отходящих газов производств.

Реактор представляет собой два коаксиальных цилиндра, один из которых (внешний) выполнен из молибденового стекла (диэлектрический барьер), а второй (внутренний электрод) – из алюминиевого сплава. Разряд возбуждается от высоковольтного трансформатора (50 Гц, 16 кВ). Удельная мощность, подводимая к реактору, составляет 0.22 Вт/см3.

Катализатор с размерами гранул 1.0 – 1.6 мм количестве 0.4 г располагался в зоне плазмы и занимал определенную долю плазменного объема путем фиксации его фторопластовыми кольцами с отверстиями для обеспечения потока газовой смеси.

Выходящий из разрядника газ анализировался в хроматографе (СО, СО2) и отбирался в поглотительные сосуды (SO2, NOx), концентрация веществ определяется по стандартным методикам. Концентрация озона, образующегося в результате возбуждения разряда при обработке газовой смеси, определяется методом абсорбционной спектроскопии по поглощению света на длине волны (λ = 253,7 нм), приходящуюся на максимум сечения фотопоглощения О3 (σ = 7,8 · 10-18 см) [11].

Температура газа в условиях эксперимента температура не превышала 80 ºС [11].

В результате кинетического степень превращения СО в гелии в плазме барьерного реактора в СО2 достигает 60 – 80 % [16].

Количество озона, обращающегося в плазме воздуха (2,5 · 1016 см-3), в среднем в 40 раз больше, чем в исследуемой газовой смеси. Среднее (для всех значений дозы плазменного воздействия) изменение концентрации озона, связанное с его расходованием на реакции окисления СО и SO2, равно 1,93 · 1016 см-3. Следовательно расход О3 на окисление СО и SO2 составляет 97 %.

Совокупность полученных данных позволяет, что имеется возможность создания таких условий плазменного окисления газовой смеси, при которых степень превращения SO2 составит на менее 98 %, а СО – не менее 44 % [11].

Совместные действия неравновесной плазмы на газовые смеси с активационными возможностями катализатора может дать выигрыш энергии, скорости процесса и степенях превращения указанных ингредиентов.

В качестве катализаторов, способствующих ускорению окисления оксидов серы и углерода в воздушной среде, в зону плазмы вводились промышленные катализаторы следующих марок: V2O5 · K2O/SiO2, КДА + 1 % RuO2, G-56 (Ni), JCJ 22-6 (CuO, ZnO/Al2O3), SK “C-2” (БАСФ, V2O5, Pd) [11]. Они используются в промышленности при высокой температуре (выше 400 ºС). Выбор катализаторов обусловлен тем, что в окислительных процессах стабильно работают катализаторы, активными составляющими которых являются металлы платиновой группы (Pt, Pd и др.). Однако из-за дефицитности и дороговизны этих металлов, практически безвозвратные их потери являются причинами поиска катализаторов, работающих на основе более доступного и дешевого сырья, содерхащих в своем составе оксиды хрома и алюминия железа и алюминия, меди и марганца, меди и хрома [16].

При обезвреживании SO2 плазменно-каталитическим методом характерно уменьшение объема плазменной зоны по сравнению с плазменным, т.е. повышается эффективность процесса, а влияние катализатора на конверсию СО менее эффективно (при использовании некоторых катализаторов даже снижается эффективность).

Концентрация озона в плазменно-каталитическом процессе ниже, чем в плазменном, не зависит от времени контакта, и продолжает оставаться выше ПДК в несколько раз. Для деструкции озона используется марганец-цементный катализатор марки ГТТ, не содержащий благородных металлов. Степень его превращения составляет 75 – 95 % при высоких скоростях и до 99 % при низких. Диапазон рабочих температур катализатора составляет 25 – 110 ºС [16].

Известно, что возбуждение барьерного разряда в воздухе сопровождается образованием оксидов азота. Их концентрации на выходе из реактора при обработке газовой смеси составляют NO – 10.9 мг/м3; NO2 – 333.57 мг/м3. Введение V2O5 · K2O/SiO2 в зону плазмы не влияет на изменение NO на выходе из реактора. При высокой дозе плазменного воздействия (0.6 мА · с/см2) и максимальном времени контакта газовой смеси с зоной плазмы выход NOx, а эффективность превращения СО и SO2 максимальна.

В результате применения реактора достигаются следующие результаты [11]:

- степень превращения SO2 не менее 90 %;

- СО – не менее 44 %;

- Минимальный выход нежелательных побочных продуктов (NOx, O3).

7. Правила учета и оценки отходов

Система учета обращения с отходами на предприятии является частью системы управления отходами производства и потребления и непосредственно связана с планированием природоохранной деятельности в связи с обращением с отходами.

Организация системы учета предполагает разработку и утверждение документации разработку процедур текущего учета и отчетности обращения с отходами и профессиональную подготовку лиц для работы с опасными отходами.

Документирование системы состоит их следующих этапов [29]:

1. разработка и утверждение распорядительных документов по вопросам распределения функций и ответственности за деятельность в области обращения с отходами (включая учет и контроль);

2. разработка и утверждение документации предприятия по учету в области обращения с отходами (включая разработку нормативов образования и лимитов размещения отходов);

3. получение паспортов на опасные отходы;

4. регистрация объектов размещения отходов в государственном реестре объектов размещения отходов;

5. получение разрешительных документов на транспортировку и размещение отходов;

6. подготовка, оформление и подписание договоров на прием-передачу отходов с целью размещения, использования и т. д.

К основным процедурам первичного учета относятся:

· инвентаризация источников образования отходов;

· инвентаризация объектов размещения отходов;

· инвентаризация объектов обезвреживания и использования отходов;

· текущий учет отходов.

Планирование природоохранной деятельности в связи с обращением с отходами предполагает:

· планирование разработки нормативной документации;

· планирование мероприятий по предотвращению или снижению объемов образования отходов (включая мероприятия по ресурсосбережению);

· планирование мероприятий по уничтожению, переработке, размещению отходов;

· планирование мероприятий по снижению воздействий на окружающую среду при обращении с отходами.

7.1. Разработка документации по обращению с отходами

Нормативные документы разрабатываются предприятием для всего цикла обращения с отходами. Ниже для каждого вида обращения с отходами приведен перечень необходимой документации.

7.1.1. Образование отходов

· Проекты нормативов образования отходов производства (разработка является обязательной на основании ст.18 Федерального закона «Об отходах производства и потребления» [20]).

· Перечень отходов, по которым следует разработать нормативы образования, составляется по результатам инвентаризации источников образования отходов (с учетом целесообразности и возможности нормирования).