Ионы металлов являются непременными компонентами природных водоемов. В зависимости от условий среды (pH, окислительно-восстановительный потенциал, наличие лигандов) они существуют в разных степенях окисления и входят в состав разнообразных неорганических и металлорганических соединений, которые могут быть истинно растворенными, коллоидно-дисперсными или входить в состав минеральных и органических взвесей.
Истинно растворенные формы металлов, в свою очередь, весьма разнообразны, что связано с процессами гидролиза, гидролитической полимеризации (образованием полиядерных гидроксокомплексов) и комплексообразования с различными лигандами. Соответственно, как каталитические свойства металлов, так и доступность для водных микроорганизмов зависят от форм существования их в водной экосистеме.
Многие металлы образуют довольно прочные комплексы с органикой; эти комплексы являются одной из важнейших форм миграции элементов в природных водах. Большинство органических комплексов образуются по хелатному циклу и являются устойчивыми. Комплексы, образуемые почвенными кислотами с солями железа, алюминия, титана, урана, ванадия, меди, молибдена и других тяжелых металлов, относительно хорошо растворимы в условиях нейтральной, слабокислой и слабощелочной сред. Поэтому металлорганические комплексы способны мигрировать в природных водах на весьма значительные расстояния. Особенно важно это для маломинерализованных и в первую очередь поверхностных вод, в которых образование других комплексов невозможно.
Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю свободных и связанных форм металла.
Переход металлов в водной среде в металлокомплексную форму имеет три следствия:
1. Может происходить увеличение суммарной концентрации ионов металла за счет перехода его в раствор из донных отложений;
2. Мембранная проницаемость комплексных ионов может существенно отличаться от проницаемости гидратированных ионов;
3. Токсичность металла в результате комплексообразования может сильно измениться.
Так, хелатные формы Cu, Cd, Hg менее токсичны, нежели свободные ионы. Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю связанных и свободных форм [34].
Источниками загрязнения вод тяжелыми металлами служат сточные воды гальванических цехов, предприятий горнодобывающей, черной и цветной металлургии, машиностроительных заводов. Тяжелые металлы входят в состав удобрений и пестицидов и могут попадать в водоемы вместе со стоком с сельскохозяйственных угодий.
Повышение концентрации тяжелых металлов в природных водах часто связано с другими видами загрязнения, например, с закислением. Выпадение кислотных осадков способствует снижению значения рН и переходу металлов из сорбированного на минеральных и органических веществах состояния в свободное.
Прежде всего представляют интерес те металлы, которые в наибольшей степени загрязняют атмосферу ввиду использования их в значительных объемах в производственной деятельности и в результате накопления во внешней среде представляют серьезную опасность с точки зрения их биологической активности и токсических свойств. К ним относят свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и мышьяк.
Биогеохимические свойства тяжелых металлов
Свойство | .Cd. | .Co. | .Cu. | .Hg. | .Ni. | .Pb. | .Zn . |
Биохимическая активность | В | В | В | В | В | В | В |
Токсичность | В | У | У | В | У | В | У |
Канцерогенность | — | В | — | — | В | — | — |
Обогащение аэрозолей | В | Н | В | В | Н | В | В |
Минеральная форма распространения | В | В | Н | В | Н | В | Н |
Органическая форма распространения | В | В | В | В | В | В | В |
Подвижность | В | Н | У | В | Н | В | У |
Тенденция к биоконцентрированию | В | В | У | В | В | В | У |
Эффективность накопления | В | У | В | В | У | В | В |
Комплексообразующая способность | У | Н | В | У | Н | Н | В |
Склонность к гидролизу | У | Н | В | У | У | У | В |
Растворимость соединений | В | Н | В | В | Н | В | В |
Время жизни | В | В | В | Н | В | Н | В |
В — высокая, У — умеренная, Н — низкая
Ванадий.
Ванадий находится преимущественно в рассеянном состоянии и обнаруживается в железных рудах, нефти, асфальтах, битумах, горючих сланцах, углях и др. Одним из главных источников загрязнения природных вод ванадием являются нефть и продукты ее переработки.
В природных водах встречается в очень малой концентрации: в воде рек 0.2 - 4.5 мкг/дм3, в морской воде - в среднем 2 мкг/дм3
В воде образует устойчивые анионные комплексы (V4O12)4- и (V10O26)6-. В миграции ванадия существенна роль растворенных комплексных соединений его с органическими веществами, особенно с гумусовыми кислотами.
Повышенные концентрации ванадия вредны для здоровья человека. ПДКв ванадия составляет 0.1 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический), ПДКвр - 0.001 мг/дм3.
Висмут
Естественными источниками поступления висмута в природные воды являются процессы выщелачивания висмутсодержащих минералов. Источником поступления в природные воды могут быть также сточные воды фармацевтических и парфюмерных производств, некоторых предприятий стекольной промышленности.
В незагрязненных поверхностных водах содержится в субмикрограммовых концентрациях. Наиболее высокая концентрация обнаружена в подземных водах и составляет 20 мкг/дм3, в морских водах - 0.02 мкг/дм3. ПДКв составляет 0.1 мг/дм3
Железо
Главными источниками соединений железа в поверхностных водах являются процессы химического выветривания горных пород, сопровождающиеся их механическим разрушением и растворением. В процессе взаимодействия с содержащимися в природных водах минеральными и органическими веществами образуется сложный комплекс соединений железа, находящихся в воде в растворенном, коллоидном и взвешенном состоянии. Значительные количества железа поступают с подземным стоком и со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и с сельскохозяйственными стоками.
Фазовые равновесия зависят от химического состава вод, рН, Eh и в некоторой степени от температуры. В рутинном анализе во взвешенную форму выделяют частицы с размером более 0.45 мк. Она представляет собой преимущественно железосодержащие минералы, гидрат оксида железа и соединения железа, сорбированные на взвесях. Истинно растворенную и коллоидную форму обычно рассматривают совместно. Растворенное железо представлено соединениями, находящимися в ионной форме, в виде гидроксокомплекса и комплексов с растворенными неорганическими и органическими веществами природных вод. В ионной форме мигрирует главным образом Fe(II), а Fe(III) в отсутствие комплексообразующих веществ не может в значительных количествах находиться в растворенном состоянии.
Железо обнаруживается в основном в водах с низкими значениями Eh.
В результате химического и биохимического (при участии железобактерий) окисления Fe(II) переходит в Fe(III), который, гидролизуясь, выпадает в осадок в виде Fe(OH)3. Как для Fе(II), так и для Fe(III) характерна склонность к образованию гидроксокомплексов типа [Fe(OH)2]+, [Fe2(OH)2]4+, [Fe(OH)3]+, [Fe2(OH)3]3+, [Fe(OH)3]- и других, сосуществующих в растворе в разных концентрациях в зависимости от рН и в целом определяющих состояние системы железо-гидроксил. Основной формой нахождения Fe(III) в поверхностных водах являются комплексные соединения его с растворенными неорганическими и органическими соединениями, главным образом гумусовыми веществами. При рН = 8.0 основной формой является Fe(OH)3 .Коллоидная форма железа наименее изучена, она представляет собой гидрат оксида железа Fe(OH)3 и комплексы с органическими веществами.