Смекни!
smekni.com

Воздействие целлюлозно-бумажной промышленности на окружающую среду. Природосберегающие технологии (стр. 4 из 7)

В аппаратах этого типа можно достичь:

- Интенсивного взаимодействия между стекающей плёнкой жидкости, образующейся при конденсации паров воды из парогазовых выбросов на охлаждаемых трубах и парогазовой смесью;

- Наименьшего удельного сопротивления аппарата. Когда паровая смесь движется меж охлаждаемых труб (в межтрубном пространстве), её объём уменьшается в процессе конденсации водяного пара.

Трудности, возникающие при осуществлении метода:

Основной сложностью является определение площади теплообмена, которая должна обеспечить конденсацию парогазовой смеси при заданном расходе охлаждающей воды с заданной её температурой. Интенсивность конденсации парогазовых смесей обусловлена: изменением по высоте скорости парогазового потока и плотности орошения; диффузионными процессами на границе раздела пар – жидкость; влиянием поперечного потока вещества на гидродинамику плёнки; возможностью уноса жидкой фазы в поток пара и срыва плёнки парогазовым потоком – это сложные факторы, определяющие интенсивность тепломассоотдачи, и которые проявляются в зависимости от геометрических характеристик трубного пучка конденсатора.

Достоинства метода и установки:

- Уменьшение вредного воздействия на атмосферу содовой пыли и дурнопахнущих серосодержащих газов. Так как эффективность пылеуловителя 95 – 99 %.

- Уменьшение наличия водяного пара в парогазовой смеси, что облегчает её очистку.

- Возврат в производство ценного химического компонента – карбоната натрия.

- Возможность использования тепла конденсации. Охлаждающая вода, проходя по трубам конденсатора, подогревается до температуры требуемой в технологическом цикле.

- Для транспортировки выбросов по межтрубному пространству конденсатора можно пользоваться самотягой вытяжной трубы, предусмотренной в технологии растворения плава, так как поверхностный конденсатор обладает низким гидравлическим сопротивлением.

Очистка сбросов в гидросферу с ЦБК.

Наиболее эффективным следует считать включение в технологический процесс замкнутой системы водоснабжения ЦБК, где вода многократно проходит технологический цикл. После каждого цикла производится её очистка и отстаивание. Воду необходимо очищать от волокон, наполнителей, клейких веществ, загрязнений различными примесями и остаточными химикатами. Обработка воды осуществляется в несколько операций: сортирование, очистка, флотация, промывка. Одним из действенных методов очистки воды является её фильтрация через фильтр, но метод ограничен величиной дисперсности фильтра и наличием загрязнителей, диаметр молекул которых, меньше диаметра молекул воды. Другой метод – отстаивание воды позволяет только удалить взвешенные частицы. Также часто используются химические методы очистки сточных вод, где в воду добавляют химические вещества, которые вступают в химические реакции с загрязнителями, что приводит к их разложению до безопасных компонентов, нейтрализации либо выпадению в осадок. Существуют также биологические методы очистки, связанные со способностью некоторых организмов (бактерий, водорослей, микроорганизмов и др.) аккумулировать и перерабатывать отдельные химические соединения и элементы.

Метод очистки сточных вод предприятия с помощью ультрафиолетового облучения.

Одним из эффективных методов является облучение воды бактерицидным ультрафиолетовым облучением. В его основе лежит обеззараживающая способность жёсткого ультрафиолетового облучения. Технология очистки такова: в закрытой ёмкости, в которой в обрабатываемую воду предварительно вводят отмытый, и измельчённый кремень включают, находящиеся под крышкой ёмкости источник ультрафиолетового излучения и источник облучения дневным светом. Производится выдержка, удаление биоосадка, отключение источников облучения. Очищенная таким способом вода удовлетворяет всем требования и нормативам по чистоте, вкусовым и цветовым качествам.

В качестве источника ультрафиолетового излучения используют лампу типа БУВ – 30. В качестве источника дневного света – гелий-неоновая лампа типа ЕВЗ ЛП – 2. Для контроля теплового режима используют встроенный термометр, а тепловой режим обеспечивается теплообменником. Размер фракций кремня 5…35 мм.

Данный способ наиболее эффективен для удаления органических веществ (в том числе фенолов и диоксинов), сульфатов и соединений хлора.

Его эффективность по этим и многим другим веществам равна 96 – 99 %.

Применение новых технологий в целлюлозно-бумажном производстве.

Бисульфитная варка в сульфит-целлюлозном производстве.

Специалисты ОАО «Центральный научно-исследовательский институт бумаги» совместно со специалистами ряда целлюлозно-бумажных предприятий разработали технологию модифицированной бисульфитной варки целлюлозы на магниевом основании с регенерацией химикатов и теплоты, при использовании которой решаются многие экологические проблемы ресурсо- и энергосбережения.

Внедрять новую технологию можно поэтапно. На первом этапе целлюлозный завод переводится с сульфитной на модифицированную бисульфитную варку на натриевом основании (варочный раствор готовится с использованием кальцинированной соды). На втором этапе натриевое основание на 50 % заменяется на магниевое (для приготовления варочного раствора используют 50 % оксида магния вместо соды). На третьем этапе всё производство переводится на 100 % магниевое основание. Внедрение процесса регенерации из отработанных щёлоков позволяет вернуть в производственный цикл 70 – 85 % химикатов и получить такое количество теплоты, которого достаточно для полного обеспечения работы выпарной станции целлюлозного производства.

Первый этап внедрения новой технологии варки не требует значительных капитальных затрат. В настоящее время на модифицированную бисульфитную варку уже переведено 5 крупных предприятий отрасли.

Проведённый расчёт ущерба окружающей среде при переходе с сульфитной на бисульфитную варку применительно к Камскому ЦБК показывает, что снижение загрязнения по общим стокам составляет 12 % по взвешенным веществам, 19.2 % по сухому остатку, 19 % по БПК, 19.2 % по фенолам, столько же по аммонийному азоту. То есть в среднем по веществам, учитываемым в сбросе в водоёмы, снижение составило 17 %. Таким образом, улучшать экологию предприятия экономически выгодно. Кроме того, на Камском ЦБК в 2 раза сократились выбросы сернистого ангидрида в атмосферу, что составляет 83,3 т в год.

Получаемая по новой технологии целлюлоза имеет достаточно высокую белизну (до 70 %) и применяется для изготовления газетной, книжно-журнальной, типографской и других видов бумаги в небелёном виде. Исключение отбелки целлюлозы для газетной бумаги позволило снизить сброс органики на очистные сооружения на 88 кг/т целлюлозы.

Модифицированная бисульфитная варка позволяет перерабатывать на целлюлозу любые виды древесины, в том числе низкокачественную древесину – сухостойную, повреждённую гнилью и др.

Использование низкокачественной древесины в составе сырья сульфитных предприятий расширяет сырьевую базу, а также улучшает структуру лесопотребления. При этом снижаются выбросы парниковых газов на лесосеках от гниения низкокачественной древесины, обеспечиваются хорошие условия для роста здоровых деревьев и они вырабатывают больше кислорода.

На Камском ЦБК в настоящее время используется 75 % магниевого основания и только 25 % натриевого. Главные достоинства магниевого основания – невысокая стоимость и возможность организации простой и надёжной системы регенерации химикатов и теплоты. Варка на смешанном магниево-натриевом основании обеспечивает получение целлюлозы с пониженной жёсткостью и высокими механическими показателями. Разработан и создан циклонный сепаратор уловитель, с помощью которого достигается снижение объёма выброса золы в атмосферу в 3 раза и утилизация тепла парогазовой смеси. Разработан проект модернизации отбельного цеха Сокольского ЦБК с целью обеспечения внедрения новой технологии отбелки волокнистых полуфабрикатов с полным исключением хлора и его соединений, что предотвращает поступление в окружающую среду токсичных хлорорганических соединений, и повышает качество белёной целлюлозы. Также здесь внедрена новая технология производства газетной бумаги с микрокапсулированными продуктами в композиции, что уменьшает расход волокнистых полуфабрикатов на 5 – 8 % и повышает качество газетной бумаги.

При наличии магний-регенерационного котла (МРК) можно утилизировать 90 – 95 % образующихся сухих веществ отработанных щёлоков. Таким образом, на очистные сооружения поступает только 5 – 10 % сухих веществ.

На утилизацию и обезвреживание в МРК могут быть направлены газовые выбросы от большинства источников, а также жидкие органические фракции, образующиеся при очистке варочных растворов от цимола и грязных конденсатов варки и выпарки. Вредные летучие органические соединения, такие, как метанол, терпеновые, фурфурол и другие, сгорают в МРК с образованием воды и углекислого газа, а диоксид серы газовых выбросов утилизируется вместе с диоксидами серы, образующимися при сжигании щёлока.

В дымовых газах МРК нет твёрдых частиц, содержание SO2после прохождения системы абсорбции не превышает 0.005 – 0.01 %, что в 5 – 10 раз меньше, чем при сжигании угля или мазута. Сжигание щёлоков проходит при температуре более низкой, чем угля и мазута, а дымовой газ проходит 3 – 4-х ступенчатую мокрую очистку, что позволяет снизить выбросы оксидов азота.

Нейтрализация щёлоков перед их упариванием при наличии системы регенерации позволяет снизить потери SO2на этой стадии и на 80 – 90 % уменьшить загрязнение конденсатов летучими кислотами иSO2. Следует отметить, что в этом случае затраченный на нейтрализацию оксид магния регенерируется при последующем сжигании щёлоков в МРК.