Смекни!
smekni.com

Методологические и методические проблемы оценки нефтяного загрязнения в природных водах (стр. 2 из 3)

1. Различие в соотношениях между углеводородными и полярными компонентами;

2. Различие в групповом составе, т.е. в соотношении между алифатическими и ароматическими углеводородами;

3. Особенности компонентного состава ароматических и алифатических СН.

Однако сами авторы вышеприведенного исследования отмечают, что им не удалось обнаружить резких различий в групповом составе естественных и нефтяных СН. Для них наиболее характерными оказались различия в компонентном химическом составе ароматической и алифатической фракций.

Газохроматографический анализ нефтяных алифатических СН показал, что в их составе преобладают соединения с содержанием углерода от Си до С^, причем максимальные концентрации приходились на Си - Cio o Основную долю СН, выделенных из незагрязненных вод и донных отложений (естественная компонента), составляли соединения с числом атомов углерода от 19 до 30. Причем в области высококипящих компонентов преобладали СН с нечетным числом углеродных компонентов, особенно GI? и €29 o На основании проведенных исследований сделан вывод о том , что "в качестве критериев, по которым можно судить о природе присутствующих компонентов, следует использовать совокупность различий в оптических свойствах углеводородов в сочетании с результатами тонкослойной и особенно газовой хроматографии" [13].

Исследования в районе г. Токио (сильно загрязненные воды) и чистых прудовых вод с островов Огасавара с применением газовой хроматографии в сочетании с массспектрометрией и рядом других методов привели к заключению, что важными индикаторами углеводородного загрязнения являются ряд отношений [21]:

1. Содержания углерода в углеводородах к количеству общего углерода в пробах воды;

2. Содержания углерода в углеводородах к количеству углерода во фракции, извлеченной из водных образцов путем экстракции этилацетатом;

3. Количества сложной смеси углеводородов, не разделяющихся на хроматограммах, к содержанию нормальных алканов (Cis - Сзз);

4. Относительно сложной комбинации отношений содержания нормальных алканов с четными и нечетными атомами углерода.

Оба представленных выше подхода к оценке загрязнения природных вод углеводородами из антропогенных источников дают ценную информацию, указывающую на возможные пути решения проблемы. Однако эти рекомендации скорее носят качественный или полуколичественный характер, поскольку не устанавливают точных процедур для соответствующих оценок, особенно на последнем расчетном этапе. Избежать неопределенности позволяет подход, предложенный одним из авторов этой работы [7]. На заведомо незагрязненном участке водоема определяется общее содержание углеводородов СН и валовое содержание органического вещества ОВ*ОН (оценивается по органическому углероду Сорг, либо по другому показателю, например, бихроматной окисляемости -ХПК), которые принимаются за фоновые. Их отношение на таком участке, как известно, является хорошим естественным маркером отсутствия нефтяного загрязнения воды в данном водоеме [21]. Умножение полученной величины отношения СН / ОВ*ОН на общую концентрацию органических веществ (ОВ) в других, отличных от фоновой, зонах (при условии ОВ>> СНобщ), приводит к величине естественной (СНест) составляющей на этих участках, а разность между общим количеством углеводородов ( СНобщ) и СНест дает оценку антропогенной составляющей (СНнеф), что можно выразить общей формулой. В приведенных выше обозначениях эти выкладки принимают вид:

СНнеф = СНобщ - (ОВХ х СНфон) / ОВфон, где ОВХ - содержание органических веществ в любой точке вне фоновой зоны.

При подобного рода оценках, как видно, большая роль отводится выбору фонового участка, о котором заведомо можно было бы сказать, что здесь не содержатся СН, связанные с продуктами переработки нефти. Далее можно использовать средние величины по фоновому участку, что в общем случае надежнее, или ограничиться данными по единственной точке, что вполне достаточно для не слишком больших и не очень различающихся по характеристике водных масс водоемов.

Ценность изложенного выше подхода к разделению антропогенной и естественной составляющих СН была нами продемонстрирована на 2-х водоемах, испытывающих постоянное антропогенное давление [1]. Часть этих материалов излагается ниже. Одним из таких водоемов, имеющим большое историческое, культурное и народнохозяйственное значение является жемчужина средней полосы России - оз. Неро Ярославской области, на западном берегу которого стоит древнейших русский город - Ростов Великий. Неро - самое большое озеро в пределах Волжского Поволжья. При среднем многолетнем уровне 93.75м (БС) длина его 13.2 км, максимальная ширина - 8.3 км, площадь зеркала 57.8 км2, объем - 90х106 м3. В него впадает около 20 притоков, наибольший из которых р. Сара имеет длину 93 км. В эту реку сбрасываются коммунальные и промышленные стоки поселка Петровское и села Поречье-Рыбное, где расположен консервный завод. Вытекает из озера р. Векса Ростовская, которая через 5км сливается с р. Устье, образуя сравнительно многоводную р. Ко-торосль. Последняя впадает в р. Волгу в пределах г. Ярославля [18]. Неро - мелководный водоем со средней глубиной 1,6 м. Около 80% акватории занимают участки с глубинами, близкими к 1 м, и только в средней части имеется ложбина с максимальной глубиной 4 м. Дно озера покрыто толстым слоем сапропеля, мощность которого на отдельных участках достигает 20 м, в среднем составляя около 5 м. Обширные пространства (более 20% акватории [6]) заняты высшей водной растительностью. Самые крупные массивы зарослей сосредоточены в юго-восточной части, да и многие другие заливы южного берега сплошь покрыты и пронизаны растениями. Пятнистость растительного покрова и меньшее ценотическое разнообразие характерны для северной части. Полосы растительности на западном и восточном берегах существенно уже, а в пределах городской черты практически отсутствуют [5]. Зимой, из-за создающихся анаэробных условий, часты заморы.

Пробы воды на приведенной схеме станций (Рисунок) отбирали с поверхностного горизонта (0,5 м) металлическим батометром и помещали в склянки с притертыми пробками объемом 1л. Для консервации туда же сразу вносили 25 мл четыреххлористого углерода. По возвращении в береговую лабораторию (спустя 2-4 часа) образцы переносили в большие делительные воронки. Дальнейшую обработку проб и измерения проводили в соответствии с изложенной выше методикой с ИК-спектрофотометрическим окончанием. Содержание органического углерода в отдельной пробе определяли персульфатным методом [3]. За меру битумоидов принимали всю совокупность органических веществ, извлеченных из 1 л воды хлороформом [15], которые взвешивали после удаления растворителя.

Основываясь на всей совокупности гидрохимических и гидробиологических данных для оз. Неро в качестве заведомо незагрязненного был выбран участок в районе заказника - водное пространство, расположенное вдали от городской черты и устьев рек и со всех сторон окруженное густыми зарослями тростника (ст. 12), полагая, что даже при сильном ветровом волнении туда не могут проникать воды, загрязненные нефтепродуктами. Только при характеристике зимней ситуации, в отсутствие необходимых данных по этому участку, использованы материалы по станции №15, куда, по всей вероятности, в подледный период также не могут попадать загрязненные воды.

В соответствии с полученными результатами в подледный период 1990г. в оз. Неро максимальные концентрации СН сосредоточены в северо-западной (ст.5) и центральной (ст.4д, дно) частях озера, откуда они сразу попадают в Вексу (ст. 6), которая, протекая по открытой местности до с. Белогостицы (место отбора проб), еще более обогащается углеводородами (табл.1). Содержание их, в целом невысокое, может доходить до 3% от суммы органических веществ.

Расчеты с использованием приведенной выше формулы показывают, что на станциях №№5,6,4д содержания углеводородов антропогенного происхождения во много раз превышают естественный фон (табл.1). Это дает основание полагать, что на северо-западной окраине оз. Неро (ст.5) имеется, или, по крайней мере, существовал в 1990г. заметный точечный источник нефтяного загрязнения, влияние которого распространялось вплоть до центральной зоны. Загрязнена нефтепродуктами и р. Ишня (ст. 16). На всех указанных станциях содержание углеводородов во много раз превышало санитарные нормы - вплоть до 15 раз на р. Вексе (последний столбец табл.1). Здесь целесообразно еще раз подчеркнуть, что при оценке уровня превышения ПДК не имеет значения источник их происхождения ; как естественные, так и искусственные СН вследствие идентичности их состава и строения воздействуют на биоту одинаковым образом. В придонной воде как зимой, так и летом углеводородов больше, чем на поверхности (ст. 4п и 4д); выше здесь и концентрация органических веществ, но неравенство соотношений СНобщ/OB в указанных точках свидетельствует о серьезных преобразованиях состава ОВ за время продвижения придонных вод к поверхности. Насколько и как это связано с метанообразованием из углеводородного сырья и с другими процессами трансформации ОВ в анаэробных условиях - предстоит выяснить. Неожиданный обратный характер носит вертикальное распределение битумоидов - в поверхностной пробе их почти в 3 раза больше, чем у дна.

Весной, ближе к концу половодья, характер пространственного распределения углеводородов значительно меняется: максимальные концентрации начинают встречаться в притоках (ст.1 и 16) и прилегающих к ним участках (ст. 2 и 9), а также в районах южных плесов, где превышение ПДК достигает 7 и более раз (табл.2). Как и зимой относительно высокие величины присущи северо-восточному участку (ст.3 и 7). На этих же участках, за исключением р. Ишни и ст. 12, выбранной в качестве фоновой, присутствуют в заметных количествах и СН, входящие в состав нефтепродуктов. Почти повсеместное превышение санитарных норм по углеводородам позволяет считать оз. Неро в этот период слабо загрязненным водоемом. В то же время некоторые его участки, такие как северо-восточный и устье р. Сары подвержены более сильному загрязнению.