Смекни!
smekni.com

Струйные энергетические технологии (стр. 3 из 5)

Таким образом, за счёт энергии атмосферы осуществляется привод воздушного теплового насоса, в результате работы которого создаются условия для преобразования в эжекторном насадке низкопотенциальной энергии внешней газовой массы, находящейся вне насадка в равновесном состоянии, в доступную для использования кинетическую энергию, высокопотенциальную теплоту и «холод» расчётной температуры. Данный бестопливный способ преобразования энергии атмосферы отличается от способа её преобразования в традиционных ветродвигателях управляемостью процесса создания воздушной струи в эжекторном насадке и высокой плотностью энергии на единицу рабочей площади. Устройства для осуществления этого способа - атмосферные бестопливные струйные двигатели.

С учётом результатов научных и экспериментальных исследований процесса последовательного присоединения эксперимент по получению мощности на валу атмосферного бестопливного струйного двигателя с открытым термодинамическим циклом можно провести без затрат на дополнительные научные исследования, разработку и производство оригинальной конструкции. Для создания стендового образца такого двигателя можно использовать уже готовые устройства, например, в качестве силового элемента - турбинный модуль маломощного турбовального ГТД, а для сжатия воздуха, образования активной струи - компрессор любого типа, ресивер с пневмоклапаном и реактивным соплом. Соотношения геометрических параметров эжекторного устройства и необходимые параметры процесса присоединения для получения расчётного количества и скорости объединенной воздушной массы, воздействующей на лопатки турбины, известны, а конструкция эжекторного насадка – единственного элемента, который необходимо изготовить, - предельно проста. Кроме того, возможность изменения параметров модульной конструкции позволяет использовать её для оптимизации параметров процесса последовательного присоединении с воздушной активной струёй и при разработке необходимых (в зависимости от сферы применения) оригинальных конструкций бестопливных струйных ГТД.

Эффективность атмосферных бестопливных струйных двигателей, по сравнению с известными ветровыми, солнечными и геотермальными преобразователями даровой и экологически чистой энергии, не зависит от географических, временных и погодных условий, а удельная мощность значительно выше и сопоставима с удельной мощностью тепловых двигателей традиционных схем. Отсутствие жаростойких материалов, и систем, связанных с использованием топлива, упрощает конструкцию, технологию, снижает себестоимость, повышает надёжность и, наряду с возможностью одновременной выработки трёх видов энергии, расширяет сферу применения бестопливных двигателей. Зависит эффективность, в основном, от значений m и wtm, технологических потерь, а также видов используемой потребителями энергии и сферы применения (в энергетических стационарных и мобильных системах, для привода различных устройств и типов движителей с одновременным получением высокопотенциальной теплоты и/или «холода»). Её можно оценивать величиной удельной мощности или отношением Eus/Etm, числитель которого увеличивается на величину энергии, используемой дополнительно сверх получаемой мощности.

Из приведенного выше описания бестопливного способа преобразования энергии и принципа конструкции двигателя для его реализации видно, что, наряду с простотой, они достаточно эффективны. Однако за счёт некоторого усложнения конструкции можно дополнительно повысить эффективность и расширить сферы применения атмосферных бестопливных струйных двигателей (см. рисунок).

Принципиальная схема возможных вариантов бестопливного преобразования низкопотенциальной энергии в струйных двигателях.

В рассматриваемых вариантах эжекторный сопловой аппарат может состоять из сужающегося реактивного сопла 1 (или струйного устройства любого другого принципа действия, обеспечивающего расчётные параметры импульсов активной струи) и эжекторного насадка - устройства присоединения 2. Для уменьшения продольных размеров струйного двигателя проточная часть устройства присоединения и турбин 3 и 4, закреплённых на концах силового вала 5, находится внутри этого полого вала, а снаружи вала расположены роторы компрессоров 6,7. Выход ступеней компрессора 30, не закреплённого на валу 5, связан через обратный клапан 20 с пневмоаккумулятором 18 рабочего тела. Сжатый воздух в него подаётся через клапаны 19 или 20. Клапан 21 обеспечивает расчетную периодичность и длительность истечения сжатого воздуха из реактивного сопла 1. Вслед за воздушной массой импульса в устройстве 2 образуется разрежение. Под действием атмосферного давления присоединяемый воздух через клапаны 26,27, лопатки 22 турбины 29, лопатки 23 турбины 3, направляющий аппарат 24 ускоряется вслед за воздушной массой импульса. От геометрических параметров сопла 1, устройства 2, их соотношения и термодинамических параметров реактивной массы импульсов зависит степень получаемого в устройстве 2 разрежения, и период времени, в течение которого оно сохраняется. А от этого зависит количество присоединяемого воздуха, его скорость и суммарный напор, создающий момент на валу 5 за счёт воздействия втекающей воздушной массы на лопатки 23 турбины 3 и объединённой реактивной массы на лопатки 25 турбины 4, закреплённой на другом конце этого вала. Часть полученной суммарной мощности используется для привода компрессоров 6,7, а часть внешними потребителями.

В одном из вариантов (А) отработавшая объединённая масса направляется в центробежный диффузор 8, в котором её оставшаяся кинетическая энергия преобразуется в потенциальную перед выбросом во внешнюю среду по каналу а через клапан 9 для повышения эффективности процесса присоединения, и/или повторного использования через канал в в качестве присоединяемых масс.

Сжимая отработавшую массу в компрессоре 7 за счёт части Eus, можно повысить эффективность процесса присоединения и стравливать её во внешнюю среду с повышенным давлением через клапан 9 и/или повторно использовать, подавая через клапан 10 по каналам в и с. При этом, за счёт разрежения, получаемого перед входом в компрессор 7, увеличивается разность потенциалов давлений при образовании импульсов, а в результате - скорость активной струи и кинетическая энергия объединённой реактивной массы с понижением температуры и увеличением момента на валу 5.

Получать разрежение для увеличения разности потенциалов давлений можно без дополнительных затрат энергии. Для этого струи, истекающие из лопаток 25 турбины 4 после создания момента, через направляющий аппарат 11 закручиваются по спирали (Б). В вихревой камере 12, в которую происходит истечение, за счёт оставшейся кинетической энергии создается вихревой эффект, образующий в центральной части разрежение, увеличивающее разность потенциалов давлений при расширении рабочего тела. Одновременно в периферийной части созданного вихря повышается давление объединённой массы, которая через направляющий аппарат 13 воздействует на лопатки 14 турбины 4, а затем (сразу или после сжатия в компрессоре 6) через клапан 16 выбрасывается и/или через клапан 17 направляется для повторного использования. В этом случае можно дополнительно увеличивать разность потенциалов давлений за счёт использования части Eus, соединив центр объёма 12 через направляющий аппарат 15 со входом компрессора 6.

При сжатии низкотемпературной отработавшей массы уменьшаются затраты энергии на работу сжатия, по сравнению со сжатием воздуха с атмосферной температурой, поэтому двигатели с открытым циклом, наряду с получением мощности, можно использовать в качестве эффективных генераторов высокопотенциального рабочего тела для более мощных бестопливных систем, создания низкотемпературных реактивных струй (в соплах 28) и тяги. Эффективность сжатия можно повысить также, используя биротативные компрессоры 7 и 30 с вращающимися в противоположные стороны рабочими колёсами без неподвижных направляющих аппаратов.

Третий способ. Процесс последовательного присоединения можно использовать для получения мощности, высокопотенциальной теплоты и «холода» также и вне атмосферных условий, преобразуя тепловую энергию внешней среды в замкнутом термодинамическом цикле [5].

Представим, что атмосферный бестопливный струйный двигатель помещён в изолированный от внешней среды объём, заполненный газом - воздухом или гелием. При работе двигателя, за счёт охлаждения отработавшей массы, в нём понизятся температура и давление. Параметры процесса присоединения изменятся настолько, что в какой-то момент Etm станет недостаточно для создания расчётной мощности компрессора, сжимающего рабочее тело для образования активной струи. В каждом цикле будет уменьшаться степень сжатия и Caj. Процесс присоединения постепенно «затухнет» и двигатель, «заморозившись», остановится.

Этого не произойдёт, если изолированный объём используется в качестве низкотемпературного теплоприёмника для истечения отработавшей газовой массы и соединён с теплообменным устройством, а выход этого устройства соединён с входами устройства присоединения и компрессора, образуя замкнутый контур. Под дейст­вием неуравновешенной силы давления газов, возникающей при создании разрежения за газовой массой импульсов активной струи, часть отработавшей газовой массы из этого объёма направляется в теплообменное устройство. В нём, получая тепло и понижая температуру внешней среды, она нагревается до температуры, необходимой для выполнения функции присоединяемых масс следующих периодов. Другая часть газовой массы через теплообменное устройство (или минуя его) направляется в компрессор для сжатия и дальнейшего использования в качестве высокопотенциального рабочего тела.