Схема 115
Замена атомов серы на атомы селена в солях 11a,b может быть проведена с помощью их кипячения с двуокисью селена в уксусной кислоте; выходы тиаселеназолов 235 составили 83 и 96% (Схема 116).[95]
Схема 116
Одним из наиболее важных достижений в области рентгеноструктурного анализа 1,2,3-дитиазолов явилось исследование хлорида 4,5-дихлор-1,2,3-дитиазолия – соли Аппеля 1а, в которой делокализация простирается вокруг цикла, от одного атома серы к другому, что приводит к укорачиванию связи S-S (2.034(2) Å) по сравнению с обычной одинарной S-S связью.[22] Длина этой связи лишь немного больше, чем аналогичная величина в полностью делокализованном 1,2,3-дитиазольном цикле (2.023 Å). Анион хлора в соли Аппеля 1а практически одинаково удален от двух атомов серы 1,2,3-дитиазольного цикла [2.932(2) Å от S(1) и 2.974(2) Å от S(2)], причем хлорид-анион лежит всего в 0.34 Å от плоскости дитиазольного цикла. В тоже время он находится на расстоянии электростатического взаимодействия с другой молекулой 1,2,3-дитиазола.
Два цикла в бис(1,2,3-дитиазоле) 22 лежат зеркально отображенными в одной кристаллографической плоскости.[22] Оба эти кольца обладают практически одинаковыми геометрическими параметрами, однако картина распределения связей существенно отличается по сравнению с солью 1а. Практически все связи в цикле, за исключением C=N связи, которая имеет ярко-выраженный двойной характер [1.276(3) Å и 1.278(3) Å], существенно удлинены по сравнению с их значениями в соли 1а, и их значения более согласуются с единичным порядком этих связей.
Кристаллические и молекулярные структуры бис(1,2,3-дитиазолов) 26 и 236 были определены с помощью РСА.[24] Молекулы дитиазола 26 лежат на кристаллографическом центре инверсии и планарны в пределах 0.03 Å. Внутримолекулярные длины связей соединения 26 близки к длинам связей бис(дитиазола) 43 (см. ниже) и вместе с длиной одинарной N-N связи согласуются с азиновой резонансной структурой. Молекула бис(дитиазолил)бензола 236 также является кристаллографически центросимметричной, но далеко не плоской. Для того, чтобы избежать потенциальных стерических затруднений между атомом S-1 и атомом водорода у атома С-3, 1,2,3-дитиазольный цикл (который является плоским в пределах 0.07 Å) повернут относительно N(1)-C(4) связи, образуя диэдральный угол 137.30([7])° с плоскостью бензольного кольца. В результате этого торсионного сдвига сопряжение с бензольным циклом существенно ослаблено.
Молекулы конденсированных бис(1,2,3-дитиазолов) 53 и 56 имеют кристаллографические центры инверсии и, в основном, планарны в пределах 0.02 Å.[38] Эти молекулы принимают структуру соскальзывающих π-слоев, причем соседние молекулы соединяются посредством «голова к боковой части» или «голова к голове».
В ионной упаковке катион-радикал 237 имеет несколько межмолекулярных контактов катион-катион; наиболее короткий из таких S···S контактов (3.740 Å) все-таки превышает сумму Ван-дер-Ваальсовых радиусов для двух атомов серы (3.6 Å).[39] Сравнение длин связей в нейтральной молекуле бис(дитиазола) 60 и его радикал-катиона 237 показывает ожидаемые различия; S-S, S-N и S-C связи укорачиваются, а N-C связи удлиняются при одноэлектронном окислении.
транс-Дихлортетратиадиазафульвален 43 и его катион-радикальные соли 238 были также исследованы с помощью РСА. Для соединения 43 длины внутримолекулярных связей S-S, S-N, и S-C немного больше, чем в 1,2,3-дитиазолиевых солях [96] и это находится в согласии со значениями, которые были вычислены ab initio.[33] Кристаллические структуры катион-радикалов 238 становятся более пространственно объемными за счет соответствующих анионов. Молекулы в близлежащих слоях соединены сверху и снизу межмолекулярными S2···S3' и S2···S4' контактами, которые снова близки к сумме Ван-дер-Ваальсовых радиусов.
Радикалы 89, которые являются плоскими в пределах 0.07 Å, нежестко ассоциированы в центросимметричные или «голова-хвост» димеры с наиболее близкими междимерными расстояниями S···S 3.233 Å. Межмолекулярные орбитальные взаимодействия этих радикалов, хотя и являются слабыми, но достаточными, для погашения парамагнетизма, с помощью образования слабых «химических связей» между двумя радикальными частицами. Внутри молекулы радикала 89 наблюдаются изменения связей между атомами, что говорит о делокализации электронной плотности радикала по всей молекуле. Укорочение N1-C2 связи говорит о существенной ее двоесвязанности. Укорочение N2-C3 и N5-C4 и удлинение N2-C2 связей может быть объяснено наличием ряда резонансных структур 89, показанных ниже (Схема 117).[37]
Схема 117
Кристаллы дитиазолильного радикала 84 состоят из плоских (в пределах 0.03 Å) недимеризованных радикалов, которые организуются в π-слои, расположенные параллельно оси χ.[9] Между слоями радикалов отсутствуют межмолекулярные S···S взаимодействия, которые были бы меньше величины суммы Ван-дер-Ваальсовых радиусов (3.6 Å). Наиболее близкие S···S взаимодействия наблюдаются при контактах «голова-голова» (3.843 Å), «голова-хвост» (3.626 Å) и между π-слоями (3.707 Å). Кристаллы бис-дитиазолов 239 состоят из π-слоев недимеризованных радикалов, которые располагаются параллельно осям Z (b, R1 = Et, Pr, R2 = Cl) или χ (a, R1 = Me, R2 = Cl).[97] Во всех изученных примерах существует множество близких S···S контактов между близлежащими дитиазольными циклами с расстояниями меньше суммы Ван-дер-Ваальсовых радиусов, некоторые из них являются наиболее короткими для несвязанных S···S контактов, которые наблюдались для недимеризованных гетероциклических сера-азотистых радикалов (3.234 Å).
Кристаллическая ячейка радикала 85, который является диамагнитным, согласно данным ЭПР, состоит из четырех димеров, которые связаны по типу «голова к голове». Эти димеры соединены между собой посредством двух различных узловых S-S связей.[98] Такой тип ассоциирования ранее для 1,2,3-дитиазолов не наблюдался. Димеры радикалов 85 не образуют сети π-слоев, как другие радикалы 1,2,3-дитиазолия, вместо этого они собираются в структуры типа «елочка», причем радикальные части молекул сгруппированы таким образом, чтобы максимизировать S···S and S···N контакты.
Структура двух димеров бис(1,2,3-дитиазолил)пиразинового радикала, связанного С-С связью (240) или S-S связью (241) была окончательно установлена методом РСА.[41] Димер 240 состоит из центросимметричных пар радикалов, связанных С3-С3´ σ-связью (1.607(4) Å), которая существенно длиннее, чем обычная sp3-sp3 C-C связь (1.54 Å) и сравнима с длинами связей напряженных систем, в которых σ-связь образуется из π-систем. Сопутствующая регибридизация у атомов углерода С3 приводит к сильным искажениям ранее плоских гетероциклов в конформации типа «бабочка» с удлинением внутримолекулярных связей.
Кристаллы 241 состоят из центросимметричных димеров, соединенных боковой S4-S4´ σ-связью. Близкая к копланарной ассоциация радикалов сопровождается раскрытием кольца и образованием экзоциклической тионной группы, атом серы которой (S3) гипервалентно взаимодействует с атомом серы S4 с длиной связи 2.817(4) Å.
Измерены химические сдвиги в спектрах ЯМР 13С для ряда перхлоратов 1,2,3-дитиазолия (Таблица 2).[7]
Данные спектров показали, что атом углерода С-5 резонирует в более слабом поле за счет существенного положительного заряда на атомах S-1 и S-2. Уменьшение значения хим. сдвигов для атома С-5 в ряду от R = MeS, R = Ph и к R = 4-NO2C6H4 указывает на уменьшающуюся способность этих соединений стабилизировать положительный заряд на атомах серы S-1 и S-2. Хим. сдвиг сигнала С-5 для 5b (R = 4-MeOC6H4) не следует этой тенденции, что говорит о существенной делокализации положительного заряда, которая воздействует на гибридизацию атома С-5. Таким образом, хим. сдвиги на атомах углерода 13С дают количественную картину распределения зарядов для перхлоратов 1,2,3-дитиазолия.
Таблица 2. Данные спектров ЯМР 13С для перхлоратов 1,2,3-дитиазолия.
Соединение | R | Хим. сдвиги на ядрах 13С, δ (м. д.) | |
С-4 | С-5 | ||
5a | MeS | 150.6 | 193.2 |
5b | 4-MeOC6H4 | 154.6 | 181.3 |
5c | Ph | 156.4 | 182.1 |
5d | 4-NO2C6H4 | 157.7 | 178.7 |
Данные спектров ЯМР 14N для некоторых 1,2,3-дитиазолов приведены в Таблице 3.[10] Полученные результаты показывают небольшую разницу в хим. сдвигах между различными моноциклическими и конденсированными производными 1,2,3-дитиазолов.
Таблица 3 Данные спектров ЯМР 14N для 1,2,3-дитиазолов в CDCl3.
Соединение | Хим. сдвиги, δ (м. д.)* | Ширина сигнала на полувысоте пика, ν½ (Гц) |
319 | 315 | |
321 | 365 | |
320 | 420 | |
332 | 487 |
* Значения хим. сдвигов приведены относительно безводного аммиака при 0 °С.