Смекни!
smekni.com

Синтез и свойства 4-замещенных 5Н-123-дитиазолов (стр. 3 из 26)

Схема 25

Установлено, что соль Аппеля 1а реагирует с оксидом тетрацианоэтилена (TCNEO), неожиданно образуя дицианометиленовое производное 42 с высоким выходом (60%) (Схема 26).[31]

Схема 26

4-Хлор-1,2,3-дитиазол-5-тион 36 оказался важным исходным соединением для синтеза илиденовых производных этого ряда. Так, тетрацианоэтилен (TCNE) и его оксид (TCNEO) реагируют с тионом 36, давая дицианометиленовый аддукт 42 с выходами 53 и 72%, соответственно.[30] Этот же продукт может быть получен с более высокими выходами при реакции с дигалогенпроизводными малононитрила (Схема 27).[32]


Схема 27

Формально илиденовым производным 1,2,3-дитиазолов можно считать тетратиадиазафульвален 43, который образуется при реакции соли Аппеля с двумя эквивалентами трифенилсурьмы.[33] Наиболее высокий выход бис(дитиазола) 43 (30%) был достигнут при проведении реакции в жидком SO2 при -70 °С. Следует отметить, что это соединение является первым примером гетерофульваленовых систем; механизм его образования представлен ниже (Схема 28).

Схема 28

Ранее неизвестные азометиленовые производные 1,2,3-дитиазолов 44 были получены при взаимодействии соли Аппеля с N-монозамещенными гидразонами 45 (Схема 29).[34] Образование этого соединения может включать генерацию карбониевого аниона из гидразона при действии основания с последующим его присоединением к молекуле соли 1а.

Схема 29

Дифенилдиазометан реагирует с тионом 36 при комнатной температуре, образуя алкилиденовое производное 46 с 83%-ным выходом. Аналогично происходит реакция с этилдиазоацетатом при кипячении в бензоле и с диэтилдиазомалонатом при кипячении в ксилоле. Однако выходы илиденов 47 и 48 несколько более низкие, 63 и 37%, соответственно.[31] Необходимо отметить, что в случае несимметрично замещенного илиденового соединения 47 образуется только один стереоизомер, благодаря взаимодействию O…S, которое идентифицируется с помощью ИК-спектроскопии (Схема 30).

Схема 30

Реакция оксима бензилиденацетофенона 49 в тетрагидрофуране с монохлоридом серы и N-этилдиизопропиламином приводит к дитиазолу 50 с невысоким выходом (23%) (Схема 31).[35]

Схема 31

1.1.6 Конденсированные 1,2,3-дитиазолы

Синтез 1,2,3-дитиазолиевых солей, конденсированных с бензольным циклом (так называемых солей Герца), реакцией ароматических аминов с монохлоридом серы является наиболее известным методом получения этого класса соединений. Хотя эта реакция известна более 80 лет, она часто применяется до сих пор. В данном обзоре рассмотрены данные, касающиеся синтеза 1,2,3-дитиазолиевых солей, конденсированных с гетероциклами и последние достижения в области классических солей Герца.

1.1.6.1 Из циклических аминов

Традиционный подход к солям Герца был исследован на примерах 1- и 2-аминонафталинов.[36] В случае 2-аминонафталина реакция идет только по пути замыкания дитиазольного цикла по более реакционноспособному 1-положению кольца, давая продукт 51 с хорошим выходом (54%), хлорирование нафталинового цикла не наблюдается. C другой стороны, аналогичная реакция 1-аминонафталина с галогенидами серы неизбежно сопровождается хлорированием в 4 положение кольца с образованием продукта 52 (Схема 32).

Схема 32

Бис(1,2,3-дитиазолы) представляют собой новый и потенциально значимый класс гетероциклических соединений. Существенным достижением последних лет является синтез этих соединений путем восстановления бис-солей Герца, например 10 трифенилсурьмой, до нейтрального бис-дитиазола 53 (Схема 33).[14]

Схема 33

Ряд конденсированных 1,2,3-дитиазолов был синтезирован Окли с соавторами реакцией ароматических и гетероароматических орто-аминотиолов с монохлоридом серы. Этот подход превосходит обычный путь – реакцию Герца, которая приводила к неудачам для ряда ароматических аминов. Примером такой реакции может служить синтез трициклического дитиазола 54 с практически количественным выходом (Схема 34).[37]

Схема 34

Наибольшие успехи были достигнуты при применении этого метода для получения бис(1,2,3-дитиазолов) из диаминодитиолов. Эти способом могут быть получены как нейтральные (после восстановления трифенилсурьмой), стабильные к окислению воздухом, бис-дитиазолы 55, 56, так и соль 57, причем в ряде случаев реакция сопровождается хлорированием бензольного или пиридинового циклов (Схема 35).[38-40]

Схема 35

Монозамещенный аминофосфиниминодитиолопиразин 58 является единственно возможным предшественником для получения бис[1,2,3]дитиазолопиразина 59.[41, 42] Реакция фосфинимина 58 с хлористым тионилом в присутствии пиридина приводит к хлориду дитиазолия, который переводится в растворимый в органическом растворителе тетрахлоргаллат дитиазолия 59. Обработка последнего Proton Sponge дает цвиттер-ион бис-дитиазолия 60 – редкий тип структур (Схема 36).

Схема 36

2-Аминоциклопент-1-ен- и 2-аминоциклогепт-1-ен-карбонитрилы реагируют со смесью S2Cl2, SCl2 и трис-изобутиламина, давая хлорированные производные циклопента- и циклогепта-дитиазолов 61 и 62 (Схема 37).[43]

Схема 37

1.1.6.2 Из оксимов циклических кетонов

Механизм превращения оксимов циклических кетонов в конденсированные 1,2,3-дитиазолы – реакции, интенсивно исследуемой в последние годы, предполагает образование N-оксида дитиазола. Однако, единственный известный до настоящего времени N-оксид 63 был выделен из реакции стабилизированного двумя трет-бутильными группами оксима циклопентадиенона 64, с монохлоридом серы в тетрагидрофуране при комнатной температуре с 58%-ным выходом (Схема 38).[44]


Схема 38

Во всех других превращениях оксимов циклических кетонов выделяются 1,2,3-дитиазолы, которые, по-видимому, получаются путем деоксигенизации промежуточных N-оксидов под действием S2Cl2. Так, 1-оксимино-3-фенилинден 65 образует дитиазол 66 (Схема 39).[35, 45]

Схема 39

Эта реакция была распространена на оксимы циклопентенона и циклопентанона. Наиболее важным достижением стало применение в этом превращении N-этилдиизопропиламина (так называемого основания Хюнига), которое позволило достичь наиболее высоких выходов дитиазолов 66 (90%) и 67 (25%). Многочисленные реакции хлорирования, дегидрохлорирования и окисления, которые предполагаются авторами в сложном многоступенчатом механизме образования дитиазола 67, делают реакцию чувствительной к малейшим изменениям условий реакции и являются ответственными за невысокий выход конечного продукта. В случае, если карбоциклическое кольцо защищено заместителем (см. образование соединений 63 и 66), хлорирования этого кольца не происходит (Схема 40).[35]

Схема 40

Аналогично протекает реакция и для оксима семичленного циклического кетона, давая смеси хлорированных циклогепта-1,2,3-дитиазолов 68 и 69.[35] Для хлорирования используется 15-ти кратный избыток монохлорида серы и полихлорирование происходит с большим выходом в присутствии N-хлорсукцинимида (NCS) (Схема 41).

Схема 41

Циклопента-1,2,3-дитиазолиевая система 70 образуется в реакции 2-замещенных оксимов циклопентанона и монохлорида серы.[46, 47] Исчерпывающее хлорирование сопровождает эту реакцию, как и в случае других циклопентадитиазолов (см. выше) (Схема 42).

Схема 42

Несколько оксимов циклопентанона, конденсированных с тиофеновым кольцом, были введены во взаимодействие с монохлоридом серы и триизобутиламином в тетрагидрофуране.[47] После 3 дневной выдержки при 4 °С был получен ряд соответствующих тиеноциклопентадитиазолов 71-73 с выходами от средних до высоких (Схема 43).


Схема 43

Этот же подход был применен и для получения пентациклических бис[1,2,3]дитиазоло-s-индаценов 74 и 75 с выходами 46 и 75%, соответственно, из диоксимов 1,5- и 1,7-гидринацендионов 76 и 77.[47] В первом случае реакция осложняется гидролизом одной из оксимных групп, что приводит к получению монодитиазола 78 (Схема 44).

Схема 44

6H-1,2,3-Бензодитиазол-6-оны 79 могут быть получены из бензохинон-4-оксимов, S2Cl2, N-этилдиизопропиламина и NCS.[48] Хлорирование, как обычно, сопровождает образование дитиазольного цикла из оксима; заместители в положениях 2 и 6 бензохинонового цикла остаются неизмененными в продуктах реакции, за исключением трет-бутильной группы, которая замещается атомом хлора. 1,4-Нафтохинон-4-оксим и 1,2-нафтохинон-2-оксим образуют аналогичным образом дитиазолы 80 и 81 (Схема 45).[48]