Остановимся на методах компьютерного моделирования и рассмотрим некоторые модели, используемые для создание первичной последовательности цепи. Можно сказать, что термин дизайн применим не только к белкам, но и к любым последовательностям, обладающих специфическими свойствами.
В этой главе рассмотрим НР - сополимеры, то есть полимеры состоящие из двух типов звеньев, и компьютерную реализацию дизайна различных моделей.
Такие сополимеры получают по следующей схеме. Гомополимерную цепь, состоящую из звеньев Н, адсорбируем на плоской поверхности. Для этого вводится сильное притяжение между звеньями цепи и поверхностью. Затем звенья, лежащие ближе к поверхности, обозначаем как Н, другие звенья как Р. В компьютерном эксперименте это значит, что eН>eР. Таким образом, звенья Н считаются лиофобными, то есть избегают взаимодействия с растворителем, а звенья Р лиофильными. [19] На рис. 2.4 проиллюстрирована схема получения таких сополимеров.
Рис. 2.4. Получение первичной структуры НР -сополимера, «приспособленного к адсорбции».[19]
Если говорить о реальном эксперименте, то модифицирование звеньев цепи происходит на каталитической поверхности. Таким образом, можно видеть основную идею молекулярного дизайна. Сначала мы получаем пространственную структуру адсорбированного сополимера, а затем исследуем свойства полученной цепи.
Поведение такой структуры сравнивали со случайными и случайно-блочными последовательностями. Оказалось, что число адсорбированных звеньев у таких сополимеров гораздо выше. То есть такие последовательности сохраняют «память» о своей адсорбированности. Таким образом, процесс адсорбции протекает более полно.
Подобную схему можно применить для получения другого класса сополимеров. На рис. 2.5. показана схема получения.
Рис. 2.5. Получение «молекулярных диспергаторов». [19]
Такие сополимеры, приспособленные к адсорбции на коллоидных частицах или маленьких органических молекулах, обладают следующей спецификой. Такие структуры чувствительны к размеру частицы, то есть проявляют определённую селективность. При адсорбции сополимера происходит стабилизирование частицы лиофильными петлями цепи. Это препятствует слипанию коллоидных частиц.
2.5.3. Моделирование мембранных белков
Рассмотрим получение модели НР – сополимера, имитирующей мембранные белки. В этом случае неполярную прослойку обозначим как Н-звенья, а полярные опушки как Р. На долю Н – звеньев приходится 30 %, а на долю Р – 70%. Введём различные энергетические параметры (eРР, eНР, eРР). При этом eНН>eРР. При моделировании происходит диффузия Н и Р звеньев. Поэтому для улучшения структуры процедуру модифицирования производят много раз. [20]
Рис. 2.6. Нативная конформация мембранного белковоподобного сополимера (слева) и конформация, полученная после равновесия в компьютерном моделировании (справа);N = 256.[20]
Из рис. 2.6. можно видеть главную особенность таких структур – эффект стабильности микросегрегированной структуры. Таким образом, можно сказать, что подобная модель «наследует» свойства мембранных мелков.
Изучение структур НР сополимеров, состоящих из двух типов звеньев Н и Р, представляет достаточно большую область полимерной физики. Наиболее интенсивно изучаются блок-сополимеры и случайные сополимеры. Иногда исследуют сополимеры с близкодействующими корреляциями вдоль цепи. Такие корреляции всегда появляются после процесса полимеризации, если вероятность присоединения Н или Р звена к растущей цепи зависит от типа звена, которое присоединилось на предыдущем шаге. Тип подобной первичной структуры можно охарактеризовать как "случайная с близкодействующими корреляциями". С другой стороны глобулярные белки можно грубо считать как разновидность НР сополимеров. В самом деле, мономерные звенья этих белков различаются тем, что одни аминокислотные остатки являются гидрофильными или заряженными, в то время как другие гидрофобными. Мы можем очень грубо приписать первым из них индекс Р, и индекс Н остальным. Если проанализировать первичную структуру белковоподобного сополимера, полученного таким образом, и сравнить с простой первичной структурой описанной выше, то можно сделать вывод, что белковая НР последовательность более информативна и специфична. Обычно считают, что в глобулярных белках гидрофильные Р звенья покрывают поверхность глобулы, делая её устойчивой к межмолекулярной агрегации, а гидрофобные звенья Н в основном формируют ядро глобулы. Можно считать, что такое требование является достаточно ограничивающим, то есть справедливо только для малой доли всех возможных первичных структур. Следовательно, А/В корреляции, определённые в этом случае, зависят от конформации глобулы в целом , и их следует характеризовать как дальнодействующие.
Вопрос состоит в том, могут ли быть получены такие первичные структуры НР сополимеров, не имеющих биологическое происхождение. Это легко сделать при помощи компьютерного моделирования, и гораздо труднее в реальном эксперименте. Однако, в обоих случаях соответствующие процедуры включают следующие шаги:
Шаг 1. Берётся гомополимерный клубок с взаимодействиями с исключённым объёмом в хорошем растворителе.
Шаг 2. За счёт сильных взаимодействий между всеми мономерными звеньями образуется гомополимерная глобула. В реальном эксперименте в этом случае подразумевается скачок температуры, добавление плохого растворителя и т.д.
Шаг 3. Этот шаг легче всего реализовать в компьютерном эксперименте. Следует рассмотреть "мгновенное фото" и модифицировать поверхность, т.е. приписать индекс Р звеньям, находящимся на поверхности, и индекс Н – звеньям, образующим ядро. В реальном эксперименте поверхность модифицируется химическим реагентом, который изменяет её из гидрофобной в гидрофильную. Если количество реагента мало, то модифицируется только поверхность, а ядро остаётся гидрофобным. Важной особенностью является достаточно быстрая модификация поверхности и достаточно медленная агрегация.
Шаг 4. Этот последний шаг необходим в компьютерном эксперименте. Вместо сильных одинаковых взаимодействий между звеньями, следует ввести различные потенциалы взаимодействия для Н и Р звеньев.
Рис. 2.7. Основные этапы схемы дизайна белковоподобных сополимеров. а) гомополимерная глобула b) глобула с модифицированной поверхностью c) белковоподобный сополимер в состоянии клубка.
В статье [3] представлены результаты компьютерного моделирования методом Монте Карло перехода клубок-глобула, который происходит при увеличении притяжения между гидрофобными звеньями В. Было показано, что по сравнению со случайными сополимерами с тем же А/В составом поведение белковоподобных сополимров значительно отличается. Также анализировались особенности первичной структуры.
В эксперименте используется цепь из N звеньев, состоящая из мономеров типа Н и Р (N = NН +NР), которые занимают ячейки в кубической решётке. Молекулы растворителя представлены как вакантные ячейки. Для моделирования используется стандартная модель с флуктуирующими связями. В этой модели считается, что каждое мономерное звено цепи занимает восемь соседних ячеек кубической решётки и длина связи может флуктуировать от 2 до Ö10. Каждая конфигурация цепи характеризуется определённой энергией короткодействующих взаимодействий U, которые определяются следующим образом. Во-первых, эффект исключённого объёма заключается в том, что если два мономерных звена занимают одну и ту же ячейку, то потенциальная энергия приравнивается бесконечности. Во-вторых, пусть nab - это общее число контактов между ближайшими соседними звеньями Н и Р или между мономерными звеньями и частицами растворителя S. Таким образом, U = åabeabnab, где eab - соответствующий энергетический параметр. Ясно такими параметрами, определяющие глобулярную организацию являются eРР, eНН, eРS, eНS, eНР. . В этой модели eРР = eНР = 0, также eРS< 0, eНS> 0, eНН < 0. Параметры eНН и eНSописывают гидрофобные взаимодействия между неполярными звеньями В и частицами полярного растворителя. Поэтому eBBnBB + eBSnBS – вклад гидрофобных взаимодействий в общую энергию системы. Таким образом общая энергия системы U = eBBnBB + eBSnBS+ eASnAS. Так как физическая природа взаимодействий сходна, то |eРS| = |eНS| = |eНН|. Однако интенсивность этих взаимодействий различна. Это обусловлено тем, что максимальное число Н-Н контактов между соседними мономерами равно 26, в то время как максимальное число контактов между Н и Р звеньями с вакантными ячейками растворителя S равно 98. Поэтому вводим нормализующий фактор равный 26/98. В конце концов считали, eРS= -1, eНS = 1, eНН = -1 и определяли температуру как главный параметр системы. Время t выражено в шагах Монте Карло на мономерное звено.
Расмотрим следующие три модели цепи сополимера.
1. Соответствующая схема получения белковоподобных сополимеров включает следующие шаги. Берётся полимерный клубок и вводятся сильные взаимодействия между всеми звеньями цепи, в результате чего образуется гомополимерная глобула. Температура Т =1. NР = N/2 звеньям, которые имеют максимальное число контактов с частицами растворителя, приписывается индекс Р (гидрофильные). Остальным NН =N/2 звеньям, которые формируют ядро, приписывается индекс В (гидрофобные). Полученную первичную структуру можно охарактеризовать средними длинами непрерывных гидрофильных и гидрофобных участков (LР и LН) , а также специфическим распределением Р и Н звеньев вдоль цепи. Для получения гетерополимерной глобулы при данной температуре требуется (2-3)´106 шагов Монте Карло, после чего в течении 4´106 шагов рассчитываются средние характеристики. Такая схема дизайна многократно повторяется.