Смекни!
smekni.com

Мутации структуры белковоподобного сополимера Компьютерное моделирование (стр. 2 из 10)

Оптимальный вариант состоит в подборе таких валентных потенциалов, жёсткость которых мало отличается от невалентных. Один из них, известный как потенциал FENE, имеет вид

-k´r02 ln[1-(r/r0)] при r < r0

Uij(r) = (2.4)

0 при r > r0

Здесь r – расстояние между парой связанных частицiи j, а параметры k и r0принимаются равными 10e/s2 и 1.95s. Другой удачной аппроксимацией является конструкция из двух потенциалов Леннарда-Джонса, действующих навстречу друг к другу и описывающих только отталкивание.

e0[(b/r)12 – 2(b/r)6 +1 при r < b

Uij(r) = (2.5)

e0b12_ 2b6+1 при r > b

(2b-r)12 (2b-r)6

Здесь bзаданная длина связи между частицами i и j. Данная функция имеет нулевой минимум при r = bи становится бесконечной при r = 0 и r = 2b.

2. Энергия деформации углов.

Для каждого атома в молекуле существуют некоторые идеальные углы, отклонение от которых требуют затрат энергии угловых деформаций (Еугл). Предполагается, что эта энергия аддитивна, причём при малых отклонениях справедлив закон Гука. Аналогично энергии деформации связей можно записать.

U(q) = C´(qi - q)2 (2.6)

Где С – силовая константа,

q- идеальное значение угла связи,

qi – мгновенное значение угла связи

Деформация углов происходит значительно легче, чем деформация связей ( константа К на порядок выше, чем С).

Для описания угловых напряжений можно использовать потенциал (2.5), если в качестве параметра bвзять расстояние между атомами, разделенными двумя связями.

3. Невалентные взаимодействия атомов (Ес).




В попарно аддитивном приближении стерический вклад в потенциальную энергию молекулы выражается через взаимодействия отдельных атомов[10].

Ec = ååfij(r) (2.7)

i < j

Взаимодействия валентно не связанных атомов складывается из дисперсионного (а также индукционного и ориентационного) притяжения и отталкивания, возникающего из-за перекрывания электронных оболочек на малых расстояниях. На рис. 2.1 показана потенциальная функция f(r) взаимодействия двух атомов в зависимости от расстояния rмежду ними.

Отталкивание между атомами апроксимируется обычно функциями вида B/rnили Cexp(-Dr), а притяжение – функцией A/rm(A, B, C, D, m, n – постоянные).

Отсутствие строгого выражения для f(r) вынуждает искать приближённые аналитические формы. Наибольшее распространение получили потенциалы типа "6-12" и "6 - exp".

Потенциал Леннарда – Джонса ( mn)

f(r) = ne(n-m)-1(n/m)m/(n-m)[(s/r)n – (s/r)m] =

ne(n-m) –1[(m/n)(r0/r)n – (r0/r)m],

где r0 = 21/6´s, m и n – численные коэффициенты. Коэффициент m выбирается равным 6. Величина n лежит в интервале от 10 до 14 и чаще всего принимается равной 12.

В этом случае данный потенциал называют потенциалом "6-12". При m = 6 и n = 12 имеем

f(r) = 4e[(s/r)12 – (s/r)6] (2.8)

Для малых rфункция f(r) имеет большое положительное значение, а с ростом r – становится отрицательной, проходя при r = r0через минимум ( где f(r0) = -e) и асимптотически приближается к нулю. Значение rпри котором функция f(r) пересекает ось r , обозначено s. Наличие дальнодействующей части создаёт расчётные трудности, ибо в плотной системе для каждой частицы становится необходимым учёт её взаимодействий с большим числом окружающих частиц. Поэтому функцию 2.8. обрывают на некотором заранее выбранном расстоянии rc, полагая, что при r > rcf(r) = 0.

Однако более целесообразно использовать такой потенциал, который сам по себе является короткодействующим. Кроме того, желательно, чтобы его производная по расстоянию обращалась в нуль на границе действия.

В качестве примера представлена подобная функция, первая и вторая части которой сшиваются в точке r = 21/6s, где f(r) = -e, а производная df(r)/dr обращается в нуль при r = 21/6s и r = rc :


f(r) = 4e[(s/r)12 – (s/r)6] при r < 21/6s

f(r) = e3(r-21/6s)2 _ 2(r-21/6)3- 1 при 21/6s < r < rc(rc-21/6s)2 (rc-21/6)3 (2.9)

0 при r > rc

Ван-дер-ваальсовые взаимодействия имеют тот же порядок, что и тепловое движение атомов (кТ). Если ещё учесть, что число этих взаимодействий равно N(N-1)/2, то можно сделать вывод, что при согласованном действии этих сил могут происходить значительные крупномасштабные конформационные перестройки макромолекулы.

4. Торсионная энергия.

Потенциалы невалентных взаимодействий дают слишком малые значения барьеров внутреннего вращения.

Это обстоятельство можно изменить, если в конформационную энергию ввести член, зависящий от взаимного расположения связей, присоединённых к оси вращения. Суммарные энергетические затраты, характеризующие отклонения от оптимальной взаимной ориентации связей, определяются как торсионная (или ориентационная) составляющая (ЕТ) конформационной энергии.

U(j) = U0/2(1 – cos(nj)) (2.10)

Где U0 – барьер внутреннего вращения. Для карбоцепных полимеров этот барьер (между транс- и гош- состоянием) составляет примерно 3 ккал/моль

n – порядок вращения. Для карбоцепных полимеров n =3.

j -значение двухгранного угла.

5. Электростатические взаимодействия (Еэл).

Для энергии электростатических взаимодействий в монополь-монопольном приближении

Eэл=Kååqiqj/re (2.11)

i < j

Где qi и qj – парциальные заряды ( в долях заряда электрона) на атомах i и j, разделённых расстоянием r; e - эффективная диэлектрическая постоянная среды; K = 332 – переводной множитель, позволяющий выразить Eэл в ккал/моль, если r – в A°.

Парциальные заряды получаются из дипольных моментов связей

q = 0,208m/l(2.12)

где l – длина связи (в А°), m - дипольный момент связи (в Дебаях), вычисляемый из опытных дипольных моментов соединений по аддитивной векторной схеме.

Парциальные заряды на связанных атомах A и B могут быть также получены по приближённой формуле Смита

q = 0,16(XAXB) + 0.035(XAXB)2 (2.13)

Здесь X – относительные электроотрицательности атомов ( по Полингу).

Если расстояние, разделяющее два точечных заряда, превышает толщину мономолекулярного слоя растворителя, в котором находятся рассматриваемая молекула, то коэффициент e в 2.11 близок к диэлектрической постоянной этого растворителя. В противном случае e@ 1- 4. Чаще всего принимают s = e.

Электростатические взаимодействия могут проявляются в полиэлектролитах. За счёт ионизации ионогенных групп на полимерной цепочке возникают заряды, а следовательно электростатические взаимодействия. В этом случае эти взаимодействия являются дальнодействующими ( убывают пропорционально 1/r) и определяют значительные крупномасштабные конформационные перестройки.

6. Другие составляющие энергии молекулы.

Водородная связь носит донорно-акцепторный характер. Она проявляется главным образом при взаимодействии атомов О и Н групп С=О и HN, входящих, в частности в молекулы пептидов. Гораздо реже возникает необходимость вводить потенциал внутримолекулярной водородной связи для учёта взаимодействий О...Н в простых или сложных эфирах. Для описания зависимости энергии водородной связи от расстояния наибольшее распространение получила трёхпараметрическая функция Морзе.

Взаимодействие двух неподелённых электронных пар (принадлежащим атомам O, S, N и др.) описываются эмпирическим потенциалом, аналогичным (2.11). Неподелённая пара представляется точечным зарядом (q = 0.1 e), расположенным на расстоянии l от ядра. Для атомов O, S,.. расстояние l отсчитывается в направлении продолжения биссектрисы угла с вершиной при данном атоме. Для атома N направление неподелённой пары совпадает с продолжением нормали к плоскости, отсекающей равные отрезки связей при атоме N. Величина l определяется сортом атома.. Если расстояние r, разделяющее две неподелённые пары, превышает 3 А°, то параметр e в (2.11) равен единице; в противном случае e = (3.5r2 – 21r + 32.5) –1