Рис. 4.5. Зависимость H- и P- петель от числа модификаций поверхности глобулы.
Из рис. 4.5. видно, что в процессе эволюции происходит увеличение длин петель. При вырождении глобулы в «головастик» кривые имеют наклон, при стабилизации глобулы в мицелоподобную структуру кривые выходят на плато.
3. Размер заархивированного файла и индекс Шеннона
Наибольший интерес представляют теоретико-информационные характеристики. Результаты представлены на Рис. 4.6.
Рис. 4.6. Зависимость индекса Шеннона (а) и величины Lв (в) от числа модификаций первичной структуры при различных значениях eP.
Оказалось, что в процессе эволюции происходит существенное снижение индекса Шеннона и размера сжатого файла, что представлено на рис. 4.6.
Такое снижение вызвано двумя факторами. Во-первых, это обусловлено увеличением средних длин петель. Во-вторых, это связано с возникновением длинного ²хвоста² (см. рис. 4.4.). Рассмотрим предельный случай. Предположим, что произошло полное вырождение сополимера. При этом образовалось плотное ядро и максимально длинный хвост из N=64 звеньев. Тогда такой сополимер можно представить как последовательность, состоящую из двух блоков: блок из 64-х единиц и блок из 64-х нулей. Если определить в этом предельном случае индекс Шеннона, то он будет равен нулю ( при использовании программы 28.2). Легко представить как будет архивироваться такая последовательность. В этом случае её можно сжать до 4-х байт ( в реальности 6-ти), хотя первоначальный размер составляет 128 байт. Можно видеть, что при возникновении длинного ²хвоста² значения индекса Шеннона и размера сжатого файла очень сильно уменьшаются.
Проанализировав рис. 4.2. – 4.6., можно предположить, что существует два режима эволюции структуры белковоподобного сополимера. Режим I – в этом случае образуется мицелоподобная структура. Режим II – происходит вырождение глобулы в «головастик». Чтобы определить границу между этими режимами, мы проводили следующую обработку данных.
Для того чтобы оценить скорость перехода ²глобула-головастик² введём характеристику Кэф, которая численно равна тангенсу угла наклона конечного линейного участка билогарифмических координатах зависимости рассматриваемых свойств LH, LP, Z, Lв, I. Подобные расчёты были проделаны для длин петель, длин хвостов, индекса Шеннона и размера сжатого файла. Результаты показаны на рис. 4.7.
Считая что в стабильном состоянии значение кэф стремится к нулю, можно оценить область стабильного состояния и область, где происходит вырождение глобулы. Из рис. 4.7. видно что для всех характеристик кэф близка к нулю при значении параметра eР» 0.2. Иными словами, для исследованной модели величина eР» 0.2 разграничивает области устойчивого и неустойчивого состояний. Таким образом при eР > 0.2 происходит образование устойчивой мицелоподобной структуры. При eР< 0.2 наблюдается вырождение глобулы и возникновение структуры типа ²головастик².
Рассмотрим зависимости величин индекса Шеннона и размера сжатого файла от энергетического параметра eР при t/t = 500.
Рис. 4.8. зависимости размера сжатого файла LB (a) индекса Шеннона I (b) от энергетического параметра eР (t = 1 млн. шагов интегрирования).
Из рис. 4.8. видно, что в режиме I при eР< 0.2 индекс Шеннона и размер сжатого файла более сильно зависит от энергетического параметра, чем в режиме II. Это связано с тем, что при eР < 0.2 происходит вырождение глобулы и образование структуры типа "головастик". Образование длинного «хвоста» ведёт к быстрому снижению значений этих характеристик. Напротив, в режиме II происходит увеличение длин петель. Поэтому зависимость теоретико – информационных характеристик имеет менее выраженный характер.
1. В процессе эволюции белково-подобного сополимера происходит увеличение длин петель и «хвостов».
2. Теоретико- информационные (индекс Шеннона и размер сжатого файла.) характеристики резко снижают своё значение в процессе эволюции.
3. Для исследованной модели энергия взаимодействия eР» 0.2 разграничивает области устойчивого и неустойчивого состояний.
4. Изучена морфология структур, образующихся в результате эволюции. Устойчивое состояние – мицеллоподобная структура. Вырожденное состояние – структура типа «головастик», в котором Н- звенья образуют ядро, а Р- звенья – хвост.
5. Существует 2 режима молекулярной эволюции. Режим I при eр < 0.2 происходит вырождение глобулы и образование структуры типа «головастик». В связи с образованием длинного «хвоста» индекс Шеннона и размер сжатого файла сильно зависят от энергетического параметра eР. В режиме II образуется мицеллоподобная структура и в основном происходит увеличение петель. Поэтому зависимость теоретико-информационных характеристик от энергетического параметра менее выражена, чем в режиме I.
1. Гросберг А.Ю., Хохлов А.Р. Статистическая физика макромолекул. М.: Наука, 1989.
2. П. Де Жен Идеи скейлинга в физике полимеров. М.: Мир, 1971.
3. Немухин А.В. Компьютерное моделирование в химии // Соросовский образовательный журнал. 1998. №6. С.48.
4. В.В. Новиков, И.А. Фёдоров. Молекулярно-динамическая модель эволюции белково-подобного сополимера.// Физико – химия полимеров. Синтез, свойства и применение. Выпуск №8.
5. Ю.Г. Папулов, П.Г. Халатур. Конформационные расчёты. Учебное пособие. – Тверь.: КГУ, 1980. –87 с.
6. Термодинамические расчёты. /Р.А. Зимин, Ю.Г. Папулов, Э.А. Серёгин и др. – Калинин: КГУ, 1985. – 87 с.
7. П.Г. Халатур, А.Р. Хохлов. Компьютерное моделирование полимеров//Соросовский образовательный журнал, том 7, №8, 2001. с. 1-8.
8. А.Р. Хохлов, С.И. Кучанов. Лекции по физической химии полимеров. – М.: Мир, 2000. –189 с.
9. Д.Г. Ширванянц, П.Г. Халатур. Компьютерное моделирование полимеров: Учеб. пособие. – Тверь: Твер. гос. ун-т, 2000. – 155 с.
10. Yu. Grosberg and A. R. Khokhlov, Giant Molecules: Here and There andEverywhere. _Academic Press, New York,1993.
11. _ A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules_AIP, New York, 1994_.
12. Anders Irbacka, Erik Sandelinb. Monte Carlo study of the phase structure of compact polymer chains.// Journal of chemical physics Vol. 110, Number 24, 1999. pp. 12256 – 12262.
13. P. G. Khalatur, Computer simulation of self-associating polymer systems./Polymer Science,vol. 42, No. 2, 2000. pp. 229-260.
14. Pavel G. Khalatur , Viktor V. Novikov 2, Alexei R. Khokhlov–Conformation – dependent evolution of copolymer sequences.//Physical review E 67, 0519XX. –pp. 1-10.
15. P.G. Khalatur, A.R. Khohlov//Molecular Phys. 1998.V. 93, №4. p. 555.
16. P.G. Khalatur, L.V. Zherenkova, A.R. Khohlov.// Europ. Phys. J. 1998. V. 5B, №4. P. 881.
17. A.R.Khokhlov, P.G.Khalatur. Protein-like copolymers: computer simulation.//Physica A 249, 253 (1998).
18. A.R.Khokhlov, P.G.Khalatur, Phys. Rev. Lett. 82, 3456 (1999).
19. A.R.Khokhlov, P.G.Khalatur, V.A. Ivanov, A.V. Cherovich, A.A. Lazutin Conformation-dependent sequence design: a review of the method and recent theoretical and computer results//Challenges in molecular simulation,. 2002 . pp. 79-99
20. Yuri A. Kriksin, 1 Pavel G. Khalatur, Alexei R. Khokhlov. Reconstruction of Protein-Like Globular Structure for Random and Designed Copolymers//Macromol. Theory Simul. 2002, 11, 213-221
21. E. I. Shakhnovich and A. M. Gutin, Proc. Natl. Acad. Sci.U.S.A. 90, 7195 _1993_.
22. E. I. Shakhnovich and A. M. Gutin, Protein Eng. 6, 793_1993_.
23. V. S. Pande, A. Yu. Grosberg, and T. Tanaka, Proc. Natl. Acad. Sci. U.S.A. 91, 12972 _1994_.
24. E. I. Shakhnovich, Fold Des 3, R45 _1998_.
25. E.A.Zheligovskaya, P.G.Khalatur, A.R.Khokhlov, Phys. Rev. E59, 3071 (1998).
Типичное распределение Р и Н мономерных звеньев вдоль цепи белковоподобного сополимера с L = 3.173, случайного сополимера с L = 1.984 и случайно-блочного с L = 3.173. Р - звенья обазначены как –1, Н – звенья как +1. Длина цепи N = 512. [3]
Приложение 2
Зависимости <U/N> и <m> от температуры для 512-звенной цепи белковоподобного сополимера ( L = 3.173), случайный сополимер
(L = 1.084), случайно-блочный сополимер (L = 3.173). [3]
Приложение 3
Температурные зависимости d<U/N>/dT и d<m>/dT для 512-звенной гетерополимерной цепи. [3]
Приложение 4
Типичные мгновенные фотографии (Snapshots) глобулярных структур (а) белковоподобных сополимеров ( L = 3.173), (b) случайных сополимеров (L = 1.984), и (c) случайноблочных сополимеров ( L = 3.173) при температуре Т = 1.5 и N = 512. Гидрофобные звенья Н – серые блоки, гидрофильные звенья Р – тёмные блоки. [3]
Приложение 5
Зависимости DL от L для метода однократного модифицирования поверхности и для итеративного метода (N = 1024). [19]