Санкт-Петербургский государственный технологический институт (Технический университет)
Физико-математическое отделение Факультет_______6________
Кафедра математического моделирования Курс_________4__________
и оптимизации химико-технологических
процессов Группа_______665________
Учебная дисциплина СИСТЕМНЫЙ АНАЛИЗ ХИМИЧЕСКИХ ТЕХНОЛОГИЙ
КУРСОВОЙ ПРОЕКТ
Тема СИНТЕЗ ХИМИКО-ТЕХНОЛОГИЧЕСКОЙ СИСТЕМЫ
Студентка Дворникова Анастасия
Руководитель Гайков А.В.
Оценка за курсовой проект___________ _____________________
(подпись руководителя)
Дата защиты проекта______________
Санкт-Петербург, 2009 год
Техническое задание
Тема: синтез химико-технологической системы.
Номер варианта: 4.
Цель: синтезировать ХТС, работающую по нижеописанной технологии.
Исходные данные:
m=4 n =1 Все реакторы идеального вытеснения
t0=50 0 С, t1=4150 С, t2=4850 С, t3=4100 С, t4=4250 С, t5=4050 С
ta1=1800 С, ta2= 1950 С
Расход смеси на входе в систему: 132000 м3/час
Концентрация компонентов:
А=0,085 об.доли
В=0,08 об.доли
С=0,0001 об.доли
Объемы реакторов, м3
V1=79, V2=65, V3=40, V4=55, V5=35
Объемы абсорберов, м3
v1=25, v2=28
Плотность орошения в 1ом абсорбере: 18 м3/м2
Плотность орошения в 2ом абсорбере: 19 м3/м2
Для получения значений k0 и Е в уравнении Аррениуса использовать данные Приложение 1 и метод наименьших квадратов.
Для нахождения значений Kp(t) использовать данные Приложение 2 и метод наименьших квадратов.
Для получения статистической модели абсорбера использовать данные Приложения 3 и метод Брандона.
ОГЛАВЛЕНИЕ
1.1 Описание объекта исследования. 6
1.2 Постановка задачи оптимизации. 6
1.3 Описание метода наименьших квадратов. 7
1.4 Описание метода Брандона. 9
1.5 Реактор идеального вытеснения. 12
1.6 Синтез оптимальных систем теплообмена. 13
2.1 Расчет k0 и E в уравнении Аррениуса с использованием метода наименьших квадратов. 17
2.2 Расчет зависимости kр(t) с использованием метода наименьших квадратов 20
2.3 Расчет статистической модели абсорбера с использованием метода Брандона 23
2.4 Расчет реакторов идеального вытеснения. 33
2.6 Синтез оптимальных систем теплообмена. 36
В нашем мире наблюдается стремительное развитие химической промышленности. Создаются и внедряются новые технологии и новая техника, большое внимание уделяется созданию безотходных и малоотходных производств, а также экономному расходованию сырья и всех видов энергии.
Промышленные процессы протекают в сложных химико-технологических системах (ХТС), каждая из которых представляет собой совокупность аппаратов и машин, объединенных в единый производственный комплекс для выпуска продукции.
Основным методом исследования ХТС не случайно считается математическое моделирование, так как этот метод позволяет открыть новые возможности при разработке математических химико-технологических процессов, в том числе по их применению их для расчета и оптимизации ХТС.
Методы анализа, синтеза и оптимизации ХТС, реализованные в виде алгоритмов и программ, применяются в системах автоматизированного проектирования химических производств (САПР). Эти системы существенно повышают производительность труда проектировщиков и позволяют значительно улучшить качество проектов. Благодаря САПР ускоряется внедрение в производство технологических разработок.
В процессе своей деятельности конструкторам и технологам постоянно приходится принимать технические решения путем выбора оптимальных вариантов. Должен быть выбран тот предпочтительный вариант конструкции изделия или технологического процесса, который затем будет разрабатываться для осуществления в производстве.
При создании современных химических и нефтехимических производств большое значение имеет рациональное использование вторичных энергоресурсов, образующихся при проведении химико-технологических процессов.
Проектирование оптимальных тепловых систем представляет сложную комбинаторную задачу, причем количество альтернативных вариантов резко возрастает при увеличении числа технологических потоков.
Существуют различные методы синтеза оптимальных ТС. Основные – комбинаторные и эвристические. Комбинаторные методы (например, метод ветвей и границ) позволяют получить точное решение. С помощью эвристических методов находят близкие к оптимальным структуры ТС, при этом из рассмотрения исключается большая часть альтернативных вариантов.
1.1 Описание объекта исследования
Химико-технологическая система (Х'ГС) представляет собой совокупность взаимосвязанных технологическими потоками и действующих как одно целое аппаратов в которых осуществляется определённая последовательность технологических операций -' подготовка сырья к химическим превращениям, химические превращения. выделение и очистка целевых продуктов.
Каждая технологическая операция протекает в отдельных аппаратах, которые являются элементами ХТС. Для исследования ХТС характерно. что при этом не изучаются внутренние свойства и структура элементов, а анализируются только такие свойства элементов. которые определяют его взаимосвязь с другими элементами Х'ГС и влияют на свойства системы в целом.
Состояние системы зависит от конструкционных параметров ХТС и технологического режима.
Конструкционные параметры ХТС - геометрические характеристики элементов системы – объём, диаметр, высота и т. д. Параметры технологического режима ХТС - совокупность параметров внутри элемента, влияющих на скорость технологического процесса, выход и качество продукции. К ним относится концентрации реагентов, температура, давление, активность катализатора, гидродинамика потока. От параметров ХТС зависит качество функционирования ХТС, которое определяют по показателям эффективности - количеству реализованной продукции, качеству продукции, эксплуатационным и капитальным затратам.
При этом следует отметить, что на показатели ХТС, несомненно. оказывают влияние показатели работы отдельных элементов, в которых одновременно протекают физические и химические процессы. Последовательное описание или изображение процессов и соответствующих им аппаратов называется технологической схемой ХТС.
1.2 Постановка задачи оптимизации
Оптимизация – это целенаправленная деятельность, заключающаяся в получении наилучших результатов при соответствующих условиях. Любая инженерная деятельность, связанная с разработкой новых технологических систем и управлением ими, сопровождается поиском оптимальных решений. Для осуществления такого поиска необходим объект оптимизации и критерий оптимальности, который также называют целевой функцией.
Для решения задач оптимизации широко используются математические описания ХТС. При формулировании критерия оптимальности ХТС принимаются во внимание технико-экономические показатели, безопасность технологических режимов оборудования, обеспечение защиты окружающей среды.
Критерий оптимальности обычно является скалярной функцией нескольких переменных. Задача оптимизации сводится к поиску экстремума этой функции, то есть
f (e, a, u, z, t, r, α, d) → Extremum
где e – вектор входных переменных; a – вектор выходных переменных; u – вектор управляющих переменных; z – вектор возмущений; t – время; r – вектор режимных параметров; α – вектор структурных параметров; d – вектор конструктивных параметров.
Входными и выходными параметрами являются обычно состав, расход и температуры отдельных потоков. Управляющими воздействиями могут быть расход сырья на входе в химический реактор или расход пара в теплообменнике. Примеры возмущений – изменения температуры окружающей среды и состава исходного сырья за счет примесей, а также изменение активности катализатора за счет его закоксовывания. Под режимными параметрами понимаются температуры и давления в аппаратах, скорости вращения рабочих органов машин.
Структурные параметры характеризуют топологию ХТС. В частности, они определяют число аппаратов в системе и связи между ними. Конструктивные параметры характеризуют габаритные размеры отдельных аппаратов, толщины их стенок и т.п. Конструктивными параметрами ректификационной колонны являются, например, число тарелок, размеры элементов тарелок.
ХТС как объект оптимизации описывается математической моделью в виде системы уравнений:
= 0; j = 1, . . . , p.Эту систему уравнений можно рассматривать кА первый вид ограничений на независимые переменные при поиске экстремума. Второй вид ограничений представляет собой система неравенств:
≥ 0; i = 1, . . . , m.Эти неравенства характеризуют ограничения на допустимые интервалы изменения независимых переменных, обусловленные нормами расхода сырья и энергии, безопасностью работы оборудования и т.п.