Таким образом, общей задачей оптимизации ХТС является нахождение экстремума функции с учетом указанных ограничений путем изменения числа независимых переменных.
1.3 Описание метода наименьших квадратов
Пусть имеется некоторая выборка экспериментальных данных объемом m опытов, содержащая независимые переменные x1, x2,..., xk и зависимую переменную (отклик) y. В общем случае зависимых переменных может быть несколько, и их выбор часто зависит от целей исследования.
Наиболее общий тип линейной модели записывается в виде
y=b0+b1z1+b2z2+...+bkzk),
где каждая из переменных zj называемая в дальнейшем фактором, представляет собой функциональную зависимость произвольного вида от независимых переменных
zj=zj(x1, x2, ..., xn).
Параметр k определяет количество факторов в эмпирическом уравнении.
Задача определения коэффициентов уравнения регрессии по МНК сводится практически к определению минимума функции многих переменных: требуется выбрать b0, b1,..., bk так, чтобы сумма квадратов отклонений, рассчитанных по уравнению, и экспериментальных значений функции отклика была минимальной
(4)
Если функция дифференцируема, то необходимым условием минимума Ф b0, b1,..., bk является выполнение равенств:
(5)
При линейном характере зависимости
система уравнений принимает вид
Раскрывая скобки и перенося направо слагаемые, не содержащие неизвестных коэффициентов bJ, j=0,…,k, получим систему линейных алгебраических уравнений
Таким образом, задача оценки неизвестных коэффициентов уравнения линейной регрессии сводится к решению системы линейных алгебраических уравнений относительно коэффициентов bi,,i=0,1,...,k что легко выполнить, например, численными методами на ЭВМ.
Статистические модели создают на основании имеющихся экспериментальных данных, снятых на действующем объекте. Задачу формулируют следующим образом: по данной выборке объемом n (т.е. по заданному числу опытов) построить модель и оценить адекватность ее реальному объекту.
В общем случае современный технологический процесс представляется в виде многомерного объекта. На объект действуют вектор входных параметров Х, составляющие которого {х1,х2,…,хl}, и вектор управления Z, составляющие которого {z1,z2,…zk}. Выходные параметры {y1,y2,…,yp} составляют вектор выходных параметров Y. Общий вид статистической модели многомерного технологического объекта можно записать в виде системы алгебраических уравнений или в векторной форме:
y1 = F1{x1,x2,…xm}
y2 = F2{x1,x2,…xm}
……………………
yp = Fp{x1,x2,…xm}
Y=F(X), где X,Y – векторы входных и выходных параметров объекта.
В данной курсовой работе для построения модели многомерного технологического объекта используется метод Брандона.
Сущность метода заключается в следующем. Предполагается, что функция F1{x1,x2,…,xm} в предыдущей системе является произведением функций от входных параметров, то есть
ŷ = yf1(x1)f2(x2)…fm(xm)
или в более удобной форме:
ŷ = yПfk(xk)
где ŷ – расчетное значение i-го выходного параметра; y = Σ(y0i/n) – средняя величина экспериментальных значений i-го выходного параметра; n – количество опытов в исходной выборке.
При использовании метода Брандона большое значение имеет порядок следования функций в уравнении. Чем больше влияние оказывает фактор на выходной параметр, тем меньшим должен быть его порядковый номер в указанном уравнении.
Оценить степень влияния к-го фактора на выходной параметр можно по величине частного коэффициента множественной корреляции:
где rxy/x1,x2,…,xm - величина частного коэффициента корреляции, учитывающая влияние К-го фактора на выходной параметр у при условии, что влияние всех прочих факторов исключено; D – определитель матрицы, построенной из парных коэффициентов корреляции.
Матрица имеет вид:
, k=1,2,3.Dm+1,m+1 – определитель матрицы с вычеркнутыми m+1-ой строкой и m+1-м столбцом;
Dm+1,k – определитель матрицы с вычеркнутыми m+1-ой строкой и k-м столбцом;
Dk,k – определитель матрицы с вычеркнутыми k-ой строкой и k-м столбцом;
rxy – парные коэффициенты корреляции определяемые по формуле:
Коэффициенты корреляции по абсолютной величине не превышает единицы. (-1 ≤ rxy ≤ 1).
Чем ближе абсолютное значение коэффициента | rxy | к единице, тем сильнее линейная связь между величинами. Следует отметить, что коэффициент корреляции одинаково отмечает долю случайности и криволинейность связи между х и у. Зависимость х и у может быть близкой к функциональной, но существенно не линейной; коэффициент корреляции при этом будет значительно меньше единицы.
Объективное определение тесноты связи может быть проведено в результате совместного анализа качественной и количественной оценок.
Порядок расположения влияющих факторов определяют в соответствии с убыванием величины частных коэффициентов корреляции. Следует иметь в виду, что коэффициент корреляции – чисто статистический показатель и не содержит предположения, что изучаемые величины находятся в причинно-следственной связи.
Прежде чем определять вид первой зависимости, следует представить исходные экспериментальные значения выходного параметра в каждом опыте yэj в безразмерной форме yэ0j
где у – средняя величина выходного параметра.
Таким образом, исходными данными для поиска первой зависимости будут нормированные значения вектора выходных параметров ỹ0 и опытные значения первого влияющего фактора. Выбрав зависимость ỹ = f1(x1) с помощью метода наименьших квадратов, определяют остаточный показатель Yэ для каждого
наблюдения.Предполагая, что уэ1 не зависит от х1, а зависит от х2,…,хm, выбирают зависимость от второго фактора. Получив расчетную зависимость находят остаточный показатель уэ2 для каждого наблюдения:
Выполнив аналогичные действия для каждого К-го влияющего фактора получают регрессионную зависимость для рассмотренного выходного параметра. Порядок расположения факторов для этой зависимости определен на этапе ранжирования и отличается от порядка в общем уравнении.
Для оценки точности аппроксимации найденной функции вычисляют корреляционное отношение:
и среднюю относительную ошибку:
Совокупность зависимостей по каждому выходному параметру представляет собой статистическую модель, многомерно технологического объекта.
1.5 Реактор идеального вытеснения
Модель идеального вытеснения предполагает, что в реакторе реализуется так называемый поршневой режим движения потока, все частицы двигаются в одном заданном направлении, в реакторе отсутствует осевое перемешивание, но разрешено радиальное, в связи, с чем значения всех параметров технологического процесса изменяются плавно от начального до конечного состояния.
Время пребывания всех частиц в аппаратах идеального вытеснения одинаково, т.е. временной характеристикой реакторов идеального вытеснения служит уравнение:
,
где τ’ – время пребывания в реакторе любого элементарного объема; τ – среднее время пребывания; Vc – расход смеси; υ – объем реактора.
Математическая модель – это система уравнений, которая устанавливает связь входных и выходных параметров реактора.
aA + bB → cC
v=K*CAa*CBb
В нашем случае скорость реакции в реакторе описывается уравнением:
Для определения скорости реакции по каждому веществу для многоступенчатых химических реакций составляется стехиометрическая матрица размером m на n, где m – число стадий, n – число компонентов.