Смекни!
smekni.com

Комплексы Связи координационная дативная Обратное связывание (стр. 1 из 2)

Комплексы. Связи координационная, дативная. Обратное связывание (универсальное !).

Комплексные соединения. Координационная связь. Дативная связь. Валентная конфигурация центрального атома металла 3d104s24p6. Правило «18 электронов» (Правило устойчивости комплексов).

Валентные эффекты в координационных соединениях очень наглядны на примере карбонилов переходных металлов. Имеется превосходная возможность для сравнения молекулы оксида углерода в свободном состоянии и в виде лиганда в комплексах.

Карбонилы переходных металлов. Cr(CO)6; Fe(CO)5; Ni(CO)4;

О взаимном расположении уровней АО в молекуле говорить в строгом смысле сложно, – они имеют статус лишь базисных единиц, а не волновых функций в строгом смысле. Тем не менее, валентная конфигурация центрального атома металла в каждом из этих трёх карбонилов может быть представлена в виде 3d104s24p6 в условном порядке увеличения главного квантового числа.

Если последовательность уровней этих базисных АО связать с увеличением числа узлов и лепестков, то конфигурация принимает вид 4s24p63d5. На шкале молекулярных уровней энергии связывающие s-орбитали лежат ниже, и поэтому нагляднее схема

В неё включены все электроны валентного слоя центрального атома и валентные электроны лигандов. У выступающей в качестве лиганда молекулы CO эту роль играет неподелённая электронная пара 5sn2, заселяющая несвязывающую ВЗМО. Часть электронов относится к обеспечивающим s-связывание гибридным орбиталям центрального атома, форма которых определяется максимальным перекрыванием с орбиталями лигандов.

Наиболее эффективна гибридизация с участием s-АО. Учитывая s-АО в составе гибрида, получаем разные числа смешивающихся базисных АО центрального атома у каждого из трёх карбонилов. Оставшиеся вне гибрида 3d-АО центрального атома обеспечивают перекрывание p-типа с лигандами.

Связывающие и разрыхляющие МО лигандов. Частоты колебаний связи CO.

Обратное связывание металл-лиганд на примере карбонилов.

Пиктографическая схема обратного связывания.

Cr¬C=O Гибридизация АО и соединения пла­тины:

PtCl2; PtCl4; [PtCl4]2-; [Pt(NH3)2]2-; [PtCl6]2-;

PtCl4(NH3)2; [Pt(CO)4]2+; [Pt(CN)4]2-; PtF62-;

Геометрия аниона соли Цейзе: K+[PtCl3(C2H4)]- :

Молекула этена ориентирована перпендикулярно плоскости аниона.

Наблюдается обратное связывание.

Платина p-донор, s-акцептор. Этен

p-акцептор на разрыхляющую p*-МО,

но s-донор на dsp2-гибридную s-АО платины.


Методы ионизационной фотоэлектронной спектроскопии (ФЭС-РЭС) дают возможность прямого экспериментального исследования орбитальных уровней МО, а также и заселённостей АО базиса.

В основе метода лежит фотоэффект, независимо открытый Столетовым и Герцем. Идея построения ионизационного спектрометра принадлежит нашему фотохимику академику Теренина.

Метод реализовал шведский учёный Карл Зигбан, за это удостоен нобелевской премии.

Основными энергетическими диапазонами ионизирующего излучения в методе ФЭС являются ультрафиолетовый и рентгеновский. В ультрафиолетовом диапазоне осуществляется спектроскопия электронов внешнего валентного (оптического) слоя. В рентгеновском диапазоне осуществляется спектроскопия внутренних электронов (1s слоя)-РЭС. ФЭС доступны уровни валентного слоя, РЭС- уровни внутренние (1s, ..).

Физическая идея эксперимента состоит в измерении кинетической энергии выбиваемых электронов. Основное соотношение:

Квант поля = Работа выхода + Кинетическая энергия выбитого электрона

hi= Wi + mV2/2; Wi = ПИi = - Ei; (Теорема Купманса);

У рассмотренных молекул следует ожидать нескольких потенциалов ионизации. Интенсивность фототока, образуемого выбиваемыми из оболочки электронами, пропорциональна кратности вырождения уровня, с которого происходит ионизация. Участие разрыхляющих МО в формировании связи в карбонилах d-элементов подтверждается понижением частот собственных валентных колебаний группы CO.

Частоты валентных колебаний, силовые константы и длины связей различных карбонильных групп

Соединение n (CO), см-1 k(CO)10-5, дн/см-1 | CO |, Ao
CºO 2150 18.6 1.13
Ni(CºO)4 2057 16.2 1.15
H2C=C=O 1935 14.5 1.17
H2C=O 1750 12.1 1.21

Частоты валентных колебаний карбонильной группы в молекуле и в некоторых карбонилах металлов

Соединение n n (CO), см-1
CºO 2150
Ni(CºO)4 0 2057
[Co(CºO)4]- -1 1886
[Fe(CºO)4] 2- -2 1786
Mn2(CºO)10 0 2074, 2015, 1972
[Cr2(CºO)10] 2- -1 1945, 1922, 1897
Fe(CºO)5 0 2034, 2014
[Mn(CºO)5]- -1 1898, 1863
Re2(CºO)10 0 2049, 2013, 1983
[W2(CºO)10] 2- -1 1944, 1906, 1882

Правило «18 электронов» соблюдается у молекул «сэндвичей»:

Cr(C6H6)2 (симметрия D6h); Fe(C5H5)2 (симметрия D5d); Ru(C5H5)2 (симметрия D5h);

Ti(C6H6)2; Zr(C6H6)2; Hf(C6H6)2.

Правило «18 электронов» «вызывает» искажения колец в “сэндвичах” рутения и родия: Ru[C6(CH3)6]2; Rh[C6(CF3)2](C5H5); (см. рисунок). Чтобы удовлетворить правилу «18 электронов», в оболочку центра от двух колец-лигандов должно включиться всего 10 внешних электронов. Это происходит благодаря тому, что искажается геометрия одного из двух колец арен надламывается, его система сопряжения нарушается, и одна его p-связь от металла отдаляется, и вблизи металла оказываются две p-связи сломанного кольца; Правило 18 в комплексе оказывается «сильнее» критерия ароматичности в кольце-лиганде...

Ориентировочное содержание.

1) «Сэндвичи» (ценовые структуры).

2) «Правило 18» и сэндвичи с искажённой геометрией ароматического лиганда.

3) Полярная связь. Уровни и составы МО. Электронные распределения. Диполи.

4) Многоатомные молекулы гидридов. Коллективные орбитали лигандов и многоцентровые МО.

«Сэндвичи» - комплексы с плоскими многоцентровыми ароматическими лигандами. Их ещё называют «ценовыми» соединениями.

Их оболочка отвечает правилу «18 электронов»:

Наиболее устойчивы оболочки комплексов,

содержащие 18 электронов в валентном слое центрального атома.

Примеры:

1) Cr [C6H6]2 ; ® Геометрия правильная, есть ось симметрии 6-го порядка..

Особенность структуры имеет место у двух сэндвичей:

2) Ru [C6(CH3)6][C6(CH3)6] ; ® Геометрия одного из двух 6-членного циклов искажена.

3) Rh [C5H5][C6(CF3)6] ; ® Геометрия 6-членного цикла искажена.

К электронам собственной конфигурации самого центрального атома добавляются электроны, находящиеся на координационных (s-) связях с лигандами.

Электронный баланс у центрального атома у двух последних сэндвичей на первый взгляд привёл бы к 20 электронам.

Однако форма лигандов искажается – они так «надламываются», что в поле центра остаётся всего 18 e: Одна связь C=C в одном из циклов комплекса-сэндвича выходит из плоскости...

44Ru (5s14d7) ®8e +6e ´2 =20>18 ® надлом одного цикла C6.

45Rh (5s14d8)®9e +6e+5e =20>18 ® надлом цикла C6.

В обоих случаях имеет место надлом кольца. Одна двойная связь удаляется от центра, и её электронная пара уже не попадает в его оболочку. За счёт этого на базисных АО центра восстанавливается электронный баланс стандартной оболочки из 18 валентных электронов.


Полярная связь.

Уровни и составы МО. Электронные распределения. Дипольные моменты.

Граничные МО гидридов ответственны за основную долю зарядовой асимметрии в системе МО. Электронное распределение смещено к базисной АО с более низким уровнем. Её коэффициент в составе МО больший. Больше и парциальная (и следовательно полная) электронная заселённость этого атома. На нём возникает отрицательный центр молекулярного диполя. К нему направлен вектор дипольного момента.

Два предельных случая. Примеры 1 (LiH) и 2 (HF):

Молекулы гидридов предельных элементов 2-го Периода Системы Менделеева

+ Li Þ LiH (пример 1)

H ® + F Þ HF (пример 2)

Моле-кулы r0, Ao Ho, кДж/моль k´105, дн/см , D
HF 0.92 586.2 9.66 1.82
HCl 1.28 431.3 5.16 1.12
HBr 1.42 364.3 4.1 0.78
HJ 1.61 297.3 3.1 0.38

Полярные связи и МО:

Образуется общая пара, она смещена

Li-H « Li+ H- ¬ либо к атому H

H- F « H + F- ¬ либо от атома H

Представим МО у молекул с полярными связями в следующем виде:

LiH; j(LiH) = h±´1s(H)± l±´2s(H) (-13.6; -5.5) эВ ® h±>l± ® h±2>l±2

HF; j(HF) = h±´1s(H) ± f±´2p(F) (-13.6; -17.4) эВ ® h±<f± ® h±2<f±2

Уровень связывающей МО всегда ниже нижнего уровня исходных АО.