Смекни!
smekni.com

Квантово-химические правила отбора элементарных стадий (стр. 2 из 3)

При переходе к Hg2+ происходит обращение ряда устойчивости по сравнению с “обычным” рядом (Zn2+), согласующимся с простыми электростатическими представлениями.

Очевидно, что в случае первой группы ионов определяющим является зарядовый, а в случае второй группы ионов – орбитальный фактор. Аналогичные объяснения получили правило взаимодействия жестких и мягких кислот и оснований (Пирсон, 1963) и правило Корнблюма.

В терминах теории Пирсона взаимодействие жестких частиц (кислот и оснований, акцепторов и доноров) соответствует зарядовому контролю, взаимодействие мягких частиц – орбитальному контролю. Степень жесткости и мягкости акцептора (A) и донора (D) можно оценивать по различным критериям. Приведем величины орбитальных электроотрицательностей En(A) Em(D) (в эВ) по Клопману:

Акцепторы: (кислоты) Al3+ Mg2+ Cr3+ Fe2+ H+ Na+ Cu2+ Zn2+ Cu+ Hg2+
6 2.42 2.06 0.69 0.42 0.0 -0.55 -1.0 -2.3 -4.6
Доноры:
(основания)
F H2O OH Br CN SH I H
-12.18 -10.7 -10.45 -9.2 -8.78 -8.59 -8.31 -7.37

В приведенной таблице самая жесткая кислота – Al3+, самое жесткое основание – F. Самая мягкая кислота – Hg2+, самое мягкое основание – H.

Орбитальная симметрия и правила отбора

Общие правила отбора ЭС по симметрии МО в реагирующей системе с циклическим многоцентровым переходным состоянием сформулировали Р.Вудворд и Р.Хоффман – правила сохранения орбитальной симметрии в ходе согласованных реакций.

Если заполненные связывающие МО реагентов коррелируют по симметрии (имеют одинаковую симметрию) с заполненными связывающими МО продуктов реакции, такая реакция будет идти согласованно термически (как ЭС). В ходе такой реакции симметрия взаимодействующих орбиталей сохраняется вдоль координаты реакции по ППЭ. Если такой корреляции нет, согласованная реакция пойдет только фотохимически.

В простых молекулах анализ симметрии граничных орбиталей позволяет сделать заключение о возможности согласованной ЭС. Например, симметрии занятой s-МО молекулы Н2 и свободной s*-МО молекулы I2 не позволяют реализоваться циклическому переходному состоянию

Это же касается и разрыхляющей s*-МО H2 и высшей занятой s-МО I2. Граничные ВЗМО и НСМО двух молекул этилена имеют разную симметрию и не могут образовать 4-членного переходного состояния при протекании ЭС

Занятая p-МО одной молекулы этилена

не может перекрываться синхронно со свободной p*-МО второй молекулы. Симметрия этих МО различна (относительно плоскости, проходящей перпендикулярно связи С-С через ее центр). В реакции бутадиена с этиленом, НСМО C4H6 (p1*-C4H6) имеет одинаковую симметрию с ВЗМО C2H4 и процесс протекает по согласованному 6-центровому механизму

Аналогично и для перекрывания p*-C2H4 и НЗМО C4H6 (p2-C4H6).

Запрещенными по симметрии как элементарные стадии являются реакции присоединения молекул H2, Cl2, HCl, HF, HCN к кратным связям олефинов и алкинов (через 4-членное циклическое переходное состояние).

Реакции нуклеофильного и электрофильного присоединения и замещения, протекающие через линейные переходные состояния разрешены по симметрии. Участие переходных металлов (d-орбитали и d-электроны) в ЭС снимает запреты по симметрии и делает реакции согласованного присоединения по кратным связям металлосодержащих фрагментов разрешенными ЭС.

,
,
,

Разрешены по симметрии орбиталей также реакции присоединения молекул НХ к координированным атомом металла алкенам.

Правило сохранения 16-18 электронной оболочки Толмена в элементарных стадиях

Уже давно было отмечено (Сиджвик, 1929), что в стабильных комплексных соединениях общее количество электронов вокруг атома металла равно числу электронов ближайшего инертного газа. Это число электронов было названо эффективным атомным номером (ЭАН). В случае d-металлов число электронов в валентной оболочке металла, связанного с лигандами, должно быть равно 18 (d10s2p6). Такая оболочка и считается устойчивой. Например, Ni(CO)4: Ni0 d10, CO – 2-х электронный лиганд. Следовательно, 10 + 8 = 18. Для расчета числа электронов в комплексе металла необходимо сложить число электронов в валентной оболочке атома металла (или иона) и число электронов, предоставляемых нейтральными лигандами (или анионами). Для этого используют ковалентную и ионную модели химической связи. В первом случае комплекс включает ионы Mn+, X и нейтральные лиганды L, а во втором – атомы металла, нейтральные группы X (гомолитический разрыв связи M–X) и нейтральные лиганды L. Например, в комплексе HMn(CO)5 в валентной оболочке Mn имеем для ионной модели:

H (2 эл) + Mn+ (6 эл) + 5CO (10 эл) = 18 эл.

для ковалентной модели:

H· (1 эл) + Mn0 (7 эл) + 5CO (10 эл) = 18 эл.

В таблице 2.1 приведены некоторые лиганды, их обозначения и количества электронов, предоставляемых металлу в рамках ковалентной и ионной моделей.

Таблица 2.1

Лиганды Символ лиганда Ковалентная модель Ионная
модель
Me, Ph, H, Cl, OH, CN X 1 эл 2 эл
CO, NH3, H2O, PR3, R2S L 2 эл 2 эл
C2H4 L 2 эл 2 эл
H2 L 2 эл 2 эл
LX 3 эл 4 эл
h3–C3H5 LX 3 эл 4 эл
h3–C5H5 L2X 5 эл 6 эл
h3–C6H6 L3 6 эл 6 эл

В координационной химии достаточно много исключений из правила 18 электронной оболочки (в основном, в случае металлоорганических комплексов): Ni(C5H5)2 – 20 электронов, W(CH3)6 – 12 электронов. Тем не менее обобщение большого экспериментального материала позволило Толмену сформулировать следующее правило:

интермедиаты, образующиеся в реакциях комплексных и металлоорганических соединений, обычно имеют 18- или 16-электронные оболочки. Именно такие интермедиаты существуют в заметных количествах.

Таким образом, в стадиях с участием d-металлов, которые рассматриваются как элементарные, число валентных электронов должно меняться на 2 единицы (18®16®18 и т.д.). Комплексы, имеющие в валентной оболочке 16 электронов, естественно, более реакционноспособны в реакциях замещения лигандов, поскольку в этом случае возможен ассоциативный механизм замещения:

Например, Rh(acac)(C2H4)2 (16 эл) обменивает этилен (13C2H4) по ассоциативному механизму с константой скорости ³ 104 сек–1 (25оС, Р = 1 атм), а (C5H5)Rh(C2H4)2 (18 эл) обменивает этилен по диссоциативному механизму с константой скорости ~ 4×10–10 сек–1.

Из трех вариантов механизма внедрения молекулы СО по связи СН3–Mn вариант (1) согласно правилу Толмена наименее вероятен:

При наличии p-аллильных, p-циклопентадиенильных и p-инденильных лигандов ассоциативный механизм для 18-электронных комплексов в ряде случаев оказывается возможным без перехода к 20-электронным оболочкам за счет изменения типа координации h-лиганда (переход от h5- к h3-типу, от h3- к h1-типу):

18 эл. 18 эл.

(h5-C5H5)M (h3-C5H5)ML

Правило устойчивой 18-электронной оболочки применимо и к кластерам металлов. Более общим для кластеров металлов является правило Уэйда для расчета “магических” чисел – кластерных валентных электронов.

Топологические правила отбора

Эти эвристические правила отвечают на вопрос о вероятных структурах переходных состояний, т.е. о возможной топологии перераспределения связей и неподеленных пар в ходе ЭС.

Под топологией перераспределения связей понимается структура графа, который получается при наложении графов, изображающих рвущиеся и образующиеся связи. Любую химическую реакцию можно представить графически, если удалить группы и атомы, не участвующие в изменении связей. Так, реакцию Дильса-Альдера можно представить графическим уравнением (35), которое описывает перераспределение связей