Смекни!
smekni.com

Технология получения радиоактивных элементов (стр. 1 из 3)

Омский государственный университет им. Ф.М.Достоевского

Кафедра неорганической химии

Реферат

Технология получения радиоактивных элементов

Работу выполнил

студент группы ХТ-901

Токарев Семен

Работу принял

доцент к.н.х.

Голованова О.А.

Омск -2010г.


Введение

Радиоактивные элементы, химические элементы, все изотопы которых радиоактивны. К числу радиоактивных элементов принадлежат технеций (атомный номер 43), прометий (61), полоний (84) и все последующие элементы в периодической системе Менделеева. К 1975 было известно 25 радиоактивных элементов. Те из них, которые расположены в периодической системе за ураном, называются трансурановыми элементами. 14 радиоактивных элементов с атомным номером 90—103 во многом сходны между собой; они составляют семейство актиноидов. Из природных радиоактивных элементов только два — торий (атомный номер 90) и уран (92) имеют изотопы, периоды полураспада которых (

) сравнимы с возрастом Земли. Это
(
= 1,41×1010 лет),
(
= 7,13×108 лет) и
(
= 4,51×109 лет). Поэтому торий и уран сохранились на нашей планете со времён её формирования и являются первичными радиоактивными элементами. Изотопы
,
и
дают начало естественным радиоактивным рядам, в состав которых входят в качестве промежуточных членов вторичные природные радиоактивные элементы с атомными номерами 84—89 и 91. Периоды полураспадов всех изотопов этих элементов сравнительно невелики, и, если бы их запасы не пополнялись непрерывно за счёт распада долгоживущих изотопов U и Th, они давно бы уже полностью распались.

Радиоактивные элементы с атомными номерами 43, 61, 93 и все последующие называются искусственными, т.к. их получают с помощью искусственно проводимых ядерных реакций. Это деление радиоактивных элементов на природные и искусственные довольно условно; так, астат (атомный номер 85) был сначала получен искусственно, а затем обнаружен среди членов естественных радиоактивных рядов. В природе найдены также ничтожные количества технеция, прометия, нептуния (атомный номер 93) и плутония (94), возникающих при делении ядер урана — либо спонтанном, либо вынужденном (под действием нейтронов космических лучей и др.).

Два радиоактивных элемента — Th и U — образуют большое число различных минералов. Переработка природного сырья позволяет получать эти элементы в больших количествах. Радиоактивные элементы — члены естественных радиоактивных рядов — могут быть выделены радиохимическими методами из отходов производства Th и U, а также из торий- или урансодержащих препаратов, хранившихся долгое время. Np, Pu и др. лёгкие трансурановые элементы получают в атомных реакторах за счёт ядерных реакций изотопа 238U с нейтронами. С помощью различных ядерных реакций получают и тяжёлые трансурановые элементы Tc и Pm образуются в атомных реакторах и могут быть выделены из продуктов деления.

Многие радиоактивные элементы имеют важное практическое значение. U и Рu используют как делящийся материал в ядерных реакторах и в ядерном оружии. Облучение тория (его природного изотопа

) нейтронами позволяет получить изотоп
— делящийся материал. Pm, Po, Pu и др. Радиоактивные элементы применяют для изготовления атомных электрических батареек со сроком непрерывной работы до нескольких лет.

Основная часть

Общая характеристика химических свойств актинидов

Семейство актинидов состоит из 14 радиоактивных элементов III группы 7-го периода периодической системы, следующих за актинием (Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr). Как и лантаниды, актиниды объединяются в отдельную группу благодаря сходству внешних электронных оболочек атомов, чем обусловлена близость многих химических свойств.

При последовательном переходе от Ac к Lr новые электроны заполняют места не на внешних оболочках – шестой и седьмой, а на более близкой к ядру 5f оболочке. Вследствие этого строение двух внешних оболочек оказывается одинаковым. У первых актинидов (до америция) энергии связи 5f и 6d электронов с ядром мало различаются, причем иногда энергия связи 5f электронов больше энергии связи 6d электронов, поэтому у атомов и ионов элементов, следующих непосредственно за актинием, могут заполняться 5f и (или) 6d оболочки.

Степени окисления, характерные для актинидов, чрезвычайно разнообразны.

Первые члены семейства имеют несколько устойчивых степеней окисления. Для U и Np наиболее характерны +4, +5, +6, у Pu появляется степень окисления +3, которая для Am является наиболее устойчивой. Cm и Bk в водных растворах могут иметь относительно устойчивую степень окисления +4, а Cf, Es, Fm, Md и No – также +2.

По химическому поведению наиболее схожи между собой U, Np, Pu и Am. Элементы Bk, Fm, Md, No и Lr по химическим свойствам подобны лантанидам. Актиниды склонны к образованию комплексных соединений, особенно с кислородсодержащими лигандами, при этом для них характерны высокие координационные числа, вплоть до 12.

Важное практическое значение в связи с проблемами переработки облученного ядерного топлива и разделения актинидов имеет химия водных растворов. В кислых водных растворах существуют следующие виды катионов:

,
,
,
. Для Np известно, для Pu предполагается существование катиона
. Катионы
и
. обладают прочной связью M-O. Энергии

Гиббса образования ионов актинидов в разных степенях окисления близки между собой, поэтому в растворе могут одновременно присутствовать различные ионы.

Для соединений актинидов в водных растворах характерны гидролиз, полимеризация, комплексообразование, а также диспропорционирование.

Наибольшее практическое значение имеют U, Pu, Th и Np. Нуклиды

и
–топливо в ядерной энергетике, источники энергии в ядерном оружии;
и
используют в производстве ядерных источников электрического тока в Бортовых космических системах. Торий – перспективное топливо в уран-ториевых реакторах. Некоторые нуклиды актинидов используют в медицине, дефектоскопии, активационном анализе и в других областях.

Обнаружение и количественное определение трансплутониевых элементов

Радиометрический метод

Наиболее чувствительным и надежным методом определения трансплутониевых элементов, который получил большое распространение, является радиометрический метод. Это обусловлено тем, что наиболее важные изотопы этих элементов, с которыми работает химик-аналитик, обладают относительно небольшими периодами полураспада, а следовательно, большой удельной активностью. Это позволяет широко использовать радиометрический метод для определения субмикрограммовых количеств ТПЭ по их характерному излучению в растворах сложного состава, при исследованиях физических и химических свойств этих элементов, контроле процессов их получения и выделения из облученных нейтронами плутония и других элементов и т. д.

Большая часть изотопов ТПЭ, таких как 241,243Аm, 242,244Сm,

,
,
,
может быть определена по их α-излучению после выделения этих элементов в радиохимически чистом состоянии. Мягкое γ-излучение, сопровождающее α-распад 241Аm и 243Аm, также может быть использовано в ряде случаев для их количественного определения. Идентификацию и определение 244Cm,
, ,
и ,
проводят по нейтронам, испускаемым при спонтанном делении этих изотопов или по осколкам деления, а 249Вк — по
-частицам.

Если содержание солей в анализируемом растворе слишком велика или мала концентрация определяемого радиоактивного элемента, то предварительно проводят его очистку или концентрирование экстракцией, ионным обменом или осаждением с различными осадками, которые затем взмучивают с минимальным количеством раствора и переносят на подложку для измерений.